Group action invariants
| Degree $n$ : | $18$ | |
| Transitive number $t$ : | $8$ | |
| Group : | $A_4 \times C_3$ | |
| Parity: | $1$ | |
| Primitive: | No | |
| Nilpotency class: | $-1$ (not nilpotent) | |
| Generators: | (1,16,10)(2,15,9)(3,18,11)(4,17,12)(5,13,8)(6,14,7), (1,8,17)(2,7,18)(3,10,14)(4,9,13)(5,11,15)(6,12,16) | |
| $|\Aut(F/K)|$: | $6$ |
Low degree resolvents
|G/N| Galois groups for stem field(s) 3: $C_3$ x 4 9: $C_3^2$ 12: $A_4$ Resolvents shown for degrees $\leq 47$
Subfields
Degree 2: None
Degree 3: $C_3$ x 4
Degree 6: $A_4$
Degree 9: $C_3^2$
Low degree siblings
12T20 x 3Siblings are shown with degree $\leq 47$
A number field with this Galois group has no arithmetically equivalent fields.
Conjugacy Classes
| Cycle Type | Size | Order | Representative |
| $ 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1 $ | $1$ | $1$ | $()$ |
| $ 2, 2, 2, 2, 2, 2, 1, 1, 1, 1, 1, 1 $ | $3$ | $2$ | $( 7, 8)( 9,10)(11,12)(13,14)(15,16)(17,18)$ |
| $ 3, 3, 3, 3, 3, 3 $ | $1$ | $3$ | $( 1, 3, 5)( 2, 4, 6)( 7, 9,12)( 8,10,11)(13,16,18)(14,15,17)$ |
| $ 6, 6, 3, 3 $ | $3$ | $6$ | $( 1, 3, 5)( 2, 4, 6)( 7,10,12, 8, 9,11)(13,15,18,14,16,17)$ |
| $ 6, 6, 3, 3 $ | $3$ | $6$ | $( 1, 5, 3)( 2, 6, 4)( 7,11, 9, 8,12,10)(13,17,16,14,18,15)$ |
| $ 3, 3, 3, 3, 3, 3 $ | $1$ | $3$ | $( 1, 5, 3)( 2, 6, 4)( 7,12, 9)( 8,11,10)(13,18,16)(14,17,15)$ |
| $ 3, 3, 3, 3, 3, 3 $ | $4$ | $3$ | $( 1, 7,17)( 2, 8,18)( 3, 9,14)( 4,10,13)( 5,12,15)( 6,11,16)$ |
| $ 3, 3, 3, 3, 3, 3 $ | $4$ | $3$ | $( 1, 9,16)( 2,10,15)( 3,12,18)( 4,11,17)( 5, 7,13)( 6, 8,14)$ |
| $ 3, 3, 3, 3, 3, 3 $ | $4$ | $3$ | $( 1,11,13)( 2,12,14)( 3, 8,16)( 4, 7,15)( 5,10,18)( 6, 9,17)$ |
| $ 3, 3, 3, 3, 3, 3 $ | $4$ | $3$ | $( 1,13,12)( 2,14,11)( 3,16, 7)( 4,15, 8)( 5,18, 9)( 6,17,10)$ |
| $ 3, 3, 3, 3, 3, 3 $ | $4$ | $3$ | $( 1,15, 9)( 2,16,10)( 3,17,12)( 4,18,11)( 5,14, 7)( 6,13, 8)$ |
| $ 3, 3, 3, 3, 3, 3 $ | $4$ | $3$ | $( 1,17, 7)( 2,18, 8)( 3,14, 9)( 4,13,10)( 5,15,12)( 6,16,11)$ |
Group invariants
| Order: | $36=2^{2} \cdot 3^{2}$ | |
| Cyclic: | No | |
| Abelian: | No | |
| Solvable: | Yes | |
| GAP id: | [36, 11] |
| Character table: |
2 2 2 2 2 2 2 . . . . . .
3 2 1 2 1 1 2 2 2 2 2 2 2
1a 2a 3a 6a 6b 3b 3c 3d 3e 3f 3g 3h
2P 1a 1a 3b 3b 3a 3a 3h 3g 3f 3e 3d 3c
3P 1a 2a 1a 2a 2a 1a 1a 1a 1a 1a 1a 1a
5P 1a 2a 3b 6b 6a 3a 3h 3g 3f 3e 3d 3c
X.1 1 1 1 1 1 1 1 1 1 1 1 1
X.2 1 1 1 1 1 1 A A A /A /A /A
X.3 1 1 1 1 1 1 /A /A /A A A A
X.4 1 1 A A /A /A 1 A /A A /A 1
X.5 1 1 /A /A A A 1 /A A /A A 1
X.6 1 1 A A /A /A A /A 1 1 A /A
X.7 1 1 /A /A A A /A A 1 1 /A A
X.8 1 1 A A /A /A /A 1 A /A 1 A
X.9 1 1 /A /A A A A 1 /A A 1 /A
X.10 3 -1 3 -1 -1 3 . . . . . .
X.11 3 -1 B -/A -A /B . . . . . .
X.12 3 -1 /B -A -/A B . . . . . .
A = E(3)^2
= (-1-Sqrt(-3))/2 = -1-b3
B = 3*E(3)
= (-3+3*Sqrt(-3))/2 = 3b3
|