Properties

Label 18T782
Order \(82944\)
n \(18\)
Cyclic No
Abelian No
Solvable Yes
Primitive No
$p$-group No

Related objects

Learn more about

Group action invariants

Degree $n$ :  $18$
Transitive number $t$ :  $782$
Parity:  $-1$
Primitive:  No
Nilpotency class:  $-1$ (not nilpotent)
Generators:  (1,15,5,18,2,16,6,17)(3,13,4,14)(7,8)(9,11,10,12), (3,4)(5,6)(7,12,8,11)(9,10)(13,16,14,15)(17,18), (1,15,10,2,16,9)(3,18,12,4,17,11)(5,14,8,6,13,7)
$|\Aut(F/K)|$:  $2$

Low degree resolvents

|G/N|Galois groups for stem field(s)
2:  $C_2$ x 3
4:  $C_2^2$
6:  $S_3$
12:  $D_{6}$
24:  $S_4$
48:  $S_4\times C_2$
648:  $(((C_3 \times (C_3^2 : C_2)) : C_2) : C_3) : C_2$
1296:  18T305
41472:  12T290

Resolvents shown for degrees $\leq 47$

Subfields

Degree 2: None

Degree 3: $S_3$

Degree 6: None

Degree 9: $(((C_3 \times (C_3^2 : C_2)) : C_2) : C_3) : C_2$

Low degree siblings

18T769 x 2, 18T782

Siblings are shown with degree $\leq 47$

A number field with this Galois group has no arithmetically equivalent fields.

Conjugacy Classes

There are 80 conjugacy classes of elements. Data not shown.

Group invariants

Order:  $82944=2^{10} \cdot 3^{4}$
Cyclic:  No
Abelian:  No
Solvable:  Yes
GAP id:  Data not available
Character table: Data not available.