Properties

Label 18T775
Order \(82944\)
n \(18\)
Cyclic No
Abelian No
Solvable Yes
Primitive No
$p$-group No

Related objects

Learn more about

Group action invariants

Degree $n$ :  $18$
Transitive number $t$ :  $775$
Parity:  $-1$
Primitive:  No
Nilpotency class:  $-1$ (not nilpotent)
Generators:  (1,8,14)(2,7,13)(3,5,15,18,9,11,4,6,16,17,10,12), (1,18,3,2,17,4)(5,11)(6,12)(7,14)(8,13)(9,15,10,16)
$|\Aut(F/K)|$:  $2$

Low degree resolvents

|G/N|Galois groups for stem field(s)
2:  $C_2$ x 3
4:  $C_2^2$
6:  $S_3$ x 2
12:  $D_{6}$ x 2
24:  $S_4$
36:  $S_3^2$
48:  $S_4\times C_2$
108:  $C_3^2 : D_{6} $
144:  12T83
324:  $((C_3^3:C_3):C_2):C_2$
432:  18T152
1296:  18T299
20736:  12T283

Resolvents shown for degrees $\leq 47$

Subfields

Degree 2: None

Degree 3: $S_3$

Degree 6: None

Degree 9: $((C_3^3:C_3):C_2):C_2$

Low degree siblings

18T771, 18T774, 18T778

Siblings are shown with degree $\leq 47$

A number field with this Galois group has no arithmetically equivalent fields.

Conjugacy Classes

There are 84 conjugacy classes of elements. Data not shown.

Group invariants

Order:  $82944=2^{10} \cdot 3^{4}$
Cyclic:  No
Abelian:  No
Solvable:  Yes
GAP id:  Data not available
Character table: Data not available.