Properties

Label 18T772
Order \(82944\)
n \(18\)
Cyclic No
Abelian No
Solvable Yes
Primitive No
$p$-group No

Related objects

Learn more about

Group action invariants

Degree $n$ :  $18$
Transitive number $t$ :  $772$
Parity:  $-1$
Primitive:  No
Nilpotency class:  $-1$ (not nilpotent)
Generators:  (1,8,18,10,3,6)(2,7,17,9,4,5)(11,16,12,15), (1,12,7)(2,11,8)(3,13,10)(4,14,9)(5,17,15)(6,18,16), (1,15,6,18,13,10,4,12,8,2,16,5,17,14,9,3,11,7)
$|\Aut(F/K)|$:  $2$

Low degree resolvents

|G/N|Galois groups for stem field(s)
2:  $C_2$ x 3
4:  $C_2^2$
6:  $S_3$ x 4
12:  $D_{6}$ x 4
18:  $C_3^2:C_2$
24:  $S_4$
36:  18T12
48:  $S_4\times C_2$
54:  $(C_3^2:C_3):C_2$
72:  12T44
108:  18T52
144:  18T66
162:  $(C_3^3:C_3):C_2$
216:  18T107
324:  18T134
432:  18T156
648:  18T225
1296:  18T308
10368:  12T276
20736:  18T644
41472:  18T717

Resolvents shown for degrees $\leq 47$

Subfields

Degree 2: None

Degree 3: $S_3$

Degree 6: None

Degree 9: $(C_3^3:C_3):C_2$

Low degree siblings

18T772

Siblings are shown with degree $\leq 47$

A number field with this Galois group has no arithmetically equivalent fields.

Conjugacy Classes

There are 144 conjugacy classes of elements. Data not shown.

Group invariants

Order:  $82944=2^{10} \cdot 3^{4}$
Cyclic:  No
Abelian:  No
Solvable:  Yes
GAP id:  Data not available
Character table: Data not available.