Properties

Label 18T767
Order \(82944\)
n \(18\)
Cyclic No
Abelian No
Solvable Yes
Primitive No
$p$-group No

Related objects

Learn more about

Group action invariants

Degree $n$ :  $18$
Transitive number $t$ :  $767$
Parity:  $-1$
Primitive:  No
Nilpotency class:  $-1$ (not nilpotent)
Generators:  (1,14,10,2,13,9)(3,18,7,4,17,8)(5,16,11,6,15,12), (1,5,2,6)(7,10,11)(8,9,12)(15,17)(16,18), (1,11,18,2,12,17)(3,8,16,5,9,13,4,7,15,6,10,14)
$|\Aut(F/K)|$:  $2$

Low degree resolvents

|G/N|Galois groups for stem field(s)
2:  $C_2$ x 3
3:  $C_3$
4:  $C_2^2$
6:  $C_6$ x 3
12:  $A_4$, $C_6\times C_2$
24:  $A_4\times C_2$ x 3
48:  $C_2^2 \times A_4$
648:  $S_3 \wr C_3 $
1296:  18T283
41472:  12T292

Resolvents shown for degrees $\leq 47$

Subfields

Degree 2: None

Degree 3: $C_3$

Degree 6: None

Degree 9: $S_3 \wr C_3 $

Low degree siblings

18T765 x 2, 18T767 x 3, 18T768 x 2

Siblings are shown with degree $\leq 47$

A number field with this Galois group has no arithmetically equivalent fields.

Conjugacy Classes

There are 110 conjugacy classes of elements. Data not shown.

Group invariants

Order:  $82944=2^{10} \cdot 3^{4}$
Cyclic:  No
Abelian:  No
Solvable:  Yes
GAP id:  Data not available
Character table: Data not available.