Properties

Label 18T764
Order \(82944\)
n \(18\)
Cyclic No
Abelian No
Solvable Yes
Primitive No
$p$-group No

Related objects

Learn more about

Group action invariants

Degree $n$ :  $18$
Transitive number $t$ :  $764$
Parity:  $-1$
Primitive:  No
Nilpotency class:  $-1$ (not nilpotent)
Generators:  (1,7,18,5,3,9,2,8,17,6,4,10)(11,16,13,12,15,14), (1,11,18,16,3,13,2,12,17,15,4,14)(5,9,7)(6,10,8)
$|\Aut(F/K)|$:  $2$

Low degree resolvents

|G/N|Galois groups for stem field(s)
2:  $C_2$ x 3
3:  $C_3$
4:  $C_2^2$
6:  $S_3$, $C_6$ x 3
12:  $D_{6}$, $C_6\times C_2$
18:  $S_3\times C_3$
24:  $S_4$
36:  $C_6\times S_3$
48:  $S_4\times C_2$
54:  $C_3^2 : C_6$
72:  12T45
108:  18T41
144:  18T61
162:  $C_3 \wr S_3 $
216:  18T97
324:  18T119
432:  18T149
648:  18T203
1296:  18T284
10368:  12T275
20736:  18T632
41472:  18T704

Resolvents shown for degrees $\leq 47$

Subfields

Degree 2: None

Degree 3: $S_3$

Degree 6: None

Degree 9: $C_3 \wr S_3 $

Low degree siblings

18T764

Siblings are shown with degree $\leq 47$

A number field with this Galois group has no arithmetically equivalent fields.

Conjugacy Classes

There are 192 conjugacy classes of elements. Data not shown.

Group invariants

Order:  $82944=2^{10} \cdot 3^{4}$
Cyclic:  No
Abelian:  No
Solvable:  Yes
GAP id:  Data not available
Character table: Data not available.