Properties

Label 18T705
Order \(41472\)
n \(18\)
Cyclic No
Abelian No
Solvable Yes
Primitive No
$p$-group No

Related objects

Learn more about

Group action invariants

Degree $n$ :  $18$
Transitive number $t$ :  $705$
Parity:  $-1$
Primitive:  No
Nilpotency class:  $-1$ (not nilpotent)
Generators:  (1,4,2,3)(7,12)(8,11)(9,10)(13,17,16)(14,18,15), (1,12,18,6,7,13,3,10,15,2,11,17,5,8,14,4,9,16)
$|\Aut(F/K)|$:  $2$

Low degree resolvents

|G/N|Galois groups for stem field(s)
2:  $C_2$
3:  $C_3$
6:  $C_6$
12:  $A_4$
24:  $A_4\times C_2$
324:  $((C_3 \times (C_3^2 : C_2)) : C_2) : C_3$
648:  18T199
20736:  12T284

Resolvents shown for degrees $\leq 47$

Subfields

Degree 2: None

Degree 3: $C_3$

Degree 6: None

Degree 9: $((C_3 \times (C_3^2 : C_2)) : C_2) : C_3$

Low degree siblings

18T699 x 2, 18T700

Siblings are shown with degree $\leq 47$

A number field with this Galois group has no arithmetically equivalent fields.

Conjugacy Classes

There are 64 conjugacy classes of elements. Data not shown.

Group invariants

Order:  $41472=2^{9} \cdot 3^{4}$
Cyclic:  No
Abelian:  No
Solvable:  Yes
GAP id:  Data not available
Character table: Data not available.