Properties

Label 18T702
Order \(41472\)
n \(18\)
Cyclic No
Abelian No
Solvable Yes
Primitive No
$p$-group No

Related objects

Learn more about

Group action invariants

Degree $n$ :  $18$
Transitive number $t$ :  $702$
Parity:  $-1$
Primitive:  No
Nilpotency class:  $-1$ (not nilpotent)
Generators:  (1,5,3)(2,6,4)(9,12)(10,11)(13,18,16,14,17,15), (1,7,14,4,11,16,2,8,13,3,12,15)(5,9,17)(6,10,18)
$|\Aut(F/K)|$:  $2$

Low degree resolvents

|G/N|Galois groups for stem field(s)
2:  $C_2$
3:  $C_3$
6:  $C_6$
12:  $A_4$
24:  $A_4\times C_2$
648:  $S_3 \wr C_3 $

Resolvents shown for degrees $\leq 47$

Subfields

Degree 2: None

Degree 3: $C_3$

Degree 6: None

Degree 9: $S_3 \wr C_3 $

Low degree siblings

12T292, 18T702, 18T703, 18T706 x 2, 18T707, 18T708, 18T709

Siblings are shown with degree $\leq 47$

A number field with this Galois group has no arithmetically equivalent fields.

Conjugacy Classes

There are 55 conjugacy classes of elements. Data not shown.

Group invariants

Order:  $41472=2^{9} \cdot 3^{4}$
Cyclic:  No
Abelian:  No
Solvable:  Yes
GAP id:  Data not available
Character table: Data not available.