Group action invariants
| Degree $n$ : | $18$ | |
| Transitive number $t$ : | $7$ | |
| Group : | $C_2^2 : C_9$ | |
| Parity: | $1$ | |
| Primitive: | No | |
| Nilpotency class: | $-1$ (not nilpotent) | |
| Generators: | (1,7,16,6,11,14,3,10,17)(2,8,15,5,12,13,4,9,18), (1,17,9,3,14,12,6,16,8)(2,18,10,4,13,11,5,15,7) | |
| $|\Aut(F/K)|$: | $6$ |
Low degree resolvents
|G/N| Galois groups for stem field(s) 3: $C_3$ 9: $C_9$ 12: $A_4$ Resolvents shown for degrees $\leq 47$
Subfields
Degree 2: None
Degree 3: $C_3$
Degree 6: $A_4$
Degree 9: $C_9$
Low degree siblings
There are no siblings with degree $\leq 47$
A number field with this Galois group has no arithmetically equivalent fields.
Conjugacy Classes
| Cycle Type | Size | Order | Representative |
| $ 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1 $ | $1$ | $1$ | $()$ |
| $ 2, 2, 2, 2, 2, 2, 1, 1, 1, 1, 1, 1 $ | $3$ | $2$ | $( 7, 8)( 9,10)(11,12)(13,14)(15,16)(17,18)$ |
| $ 6, 6, 3, 3 $ | $3$ | $6$ | $( 1, 3, 6)( 2, 4, 5)( 7, 9,11, 8,10,12)(13,16,18,14,15,17)$ |
| $ 3, 3, 3, 3, 3, 3 $ | $1$ | $3$ | $( 1, 3, 6)( 2, 4, 5)( 7,10,11)( 8, 9,12)(13,15,18)(14,16,17)$ |
| $ 6, 6, 3, 3 $ | $3$ | $6$ | $( 1, 5, 3, 2, 6, 4)( 7,11,10)( 8,12, 9)(13,17,15,14,18,16)$ |
| $ 3, 3, 3, 3, 3, 3 $ | $1$ | $3$ | $( 1, 6, 3)( 2, 5, 4)( 7,11,10)( 8,12, 9)(13,18,15)(14,17,16)$ |
| $ 9, 9 $ | $4$ | $9$ | $( 1, 7,15, 6,11,13, 3,10,18)( 2, 8,16, 5,12,14, 4, 9,17)$ |
| $ 9, 9 $ | $4$ | $9$ | $( 1, 9,13, 6, 8,18, 3,12,15)( 2,10,14, 5, 7,17, 4,11,16)$ |
| $ 9, 9 $ | $4$ | $9$ | $( 1,11,18, 6,10,15, 3, 7,13)( 2,12,17, 5, 9,16, 4, 8,14)$ |
| $ 9, 9 $ | $4$ | $9$ | $( 1,13, 7, 3,15,10, 6,18,11)( 2,14, 8, 4,16, 9, 5,17,12)$ |
| $ 9, 9 $ | $4$ | $9$ | $( 1,15,12, 3,18, 8, 6,13, 9)( 2,16,11, 4,17, 7, 5,14,10)$ |
| $ 9, 9 $ | $4$ | $9$ | $( 1,17,10, 3,14,11, 6,16, 7)( 2,18, 9, 4,13,12, 5,15, 8)$ |
Group invariants
| Order: | $36=2^{2} \cdot 3^{2}$ | |
| Cyclic: | No | |
| Abelian: | No | |
| Solvable: | Yes | |
| GAP id: | [36, 3] |
| Character table: |
2 2 2 2 2 2 2 . . . . . .
3 2 1 1 2 1 2 2 2 2 2 2 2
1a 2a 6a 3a 6b 3b 9a 9b 9c 9d 9e 9f
2P 1a 1a 3b 3b 3a 3a 9e 9d 9f 9a 9c 9b
3P 1a 2a 2a 1a 2a 1a 3b 3b 3b 3a 3a 3a
5P 1a 2a 6b 3b 6a 3a 9d 9f 9e 9b 9a 9c
7P 1a 2a 6a 3a 6b 3b 9b 9c 9a 9f 9d 9e
X.1 1 1 1 1 1 1 1 1 1 1 1 1
X.2 1 1 1 1 1 1 A A A /A /A /A
X.3 1 1 1 1 1 1 /A /A /A A A A
X.4 1 1 A A /A /A C D E /E /D /C
X.5 1 1 A A /A /A D E C /C /E /D
X.6 1 1 A A /A /A E C D /D /C /E
X.7 1 1 /A /A A A /C /D /E E D C
X.8 1 1 /A /A A A /E /C /D D C E
X.9 1 1 /A /A A A /D /E /C C E D
X.10 3 -1 -1 3 -1 3 . . . . . .
X.11 3 -1 -/A B -A /B . . . . . .
X.12 3 -1 -A /B -/A B . . . . . .
A = E(3)^2
= (-1-Sqrt(-3))/2 = -1-b3
B = 3*E(3)
= (-3+3*Sqrt(-3))/2 = 3b3
C = -E(9)^4-E(9)^7
D = E(9)^7
E = E(9)^4
|