Properties

Label 18T696
Order \(41472\)
n \(18\)
Cyclic No
Abelian No
Solvable Yes
Primitive No
$p$-group No

Related objects

Learn more about

Group action invariants

Degree $n$ :  $18$
Transitive number $t$ :  $696$
Parity:  $-1$
Primitive:  No
Nilpotency class:  $-1$ (not nilpotent)
Generators:  (1,12,10,4,14,6,17,16,7,2,11,9,3,13,5,18,15,8), (1,18,3,2,17,4)(5,10,8)(6,9,7)(11,16,14)(12,15,13), (1,3,18)(2,4,17)(5,7,10)(6,8,9)(11,16,13,12,15,14)
$|\Aut(F/K)|$:  $2$

Low degree resolvents

|G/N|Galois groups for stem field(s)
2:  $C_2$
3:  $C_3$ x 4
6:  $C_6$ x 4
9:  $C_3^2$
12:  $A_4$
18:  $C_6 \times C_3$
24:  $A_4\times C_2$
27:  $C_3^2:C_3$
36:  $C_3\times A_4$
54:  18T15
72:  18T25
81:  $C_3 \wr C_3 $
108:  18T48
162:  18T75
216:  18T91
324:  18T127
648:  18T188
5184:  12T265
10368:  18T552
20736:  18T633

Resolvents shown for degrees $\leq 47$

Subfields

Degree 2: None

Degree 3: $C_3$

Degree 6: None

Degree 9: $C_3 \wr C_3 $

Low degree siblings

18T696 x 2

Siblings are shown with degree $\leq 47$

A number field with this Galois group has no arithmetically equivalent fields.

Conjugacy Classes

There are 192 conjugacy classes of elements. Data not shown.

Group invariants

Order:  $41472=2^{9} \cdot 3^{4}$
Cyclic:  No
Abelian:  No
Solvable:  Yes
GAP id:  Data not available
Character table: Data not available.