Properties

Label 18T691
Order \(36864\)
n \(18\)
Cyclic No
Abelian No
Solvable Yes
Primitive No
$p$-group No

Related objects

Learn more about

Group action invariants

Degree $n$ :  $18$
Transitive number $t$ :  $691$
Parity:  $-1$
Primitive:  No
Nilpotency class:  $-1$ (not nilpotent)
Generators:  (1,6,11,3,9,14)(2,5,12,4,10,13)(7,16,18,8,15,17), (1,4,13,11)(2,3,14,12)(5,16,9,18,6,15,10,17)(7,8), (1,6,11,7)(2,5,12,8)(3,14,16,17)(4,13,15,18)(9,10)
$|\Aut(F/K)|$:  $2$

Low degree resolvents

|G/N|Galois groups for stem field(s)
2:  $C_2$ x 7
4:  $C_2^2$ x 7
8:  $D_{4}$ x 2, $C_2^3$
16:  $D_4\times C_2$
72:  $C_3^2:D_4$
144:  12T77
1152:  $S_4\wr C_2$ x 2
2304:  12T235 x 2
18432:  18T626

Resolvents shown for degrees $\leq 47$

Subfields

Degree 2: None

Degree 3: None

Degree 6: None

Degree 9: $S_3^2:C_2$

Low degree siblings

18T691 x 3

Siblings are shown with degree $\leq 47$

A number field with this Galois group has no arithmetically equivalent fields.

Conjugacy Classes

There are 108 conjugacy classes of elements. Data not shown.

Group invariants

Order:  $36864=2^{12} \cdot 3^{2}$
Cyclic:  No
Abelian:  No
Solvable:  Yes
GAP id:  Data not available
Character table: Data not available.