Group action invariants
| Degree $n$ : | $18$ | |
| Transitive number $t$ : | $67$ | |
| Group : | $C_2\times C_2^2:D_9$ | |
| Parity: | $-1$ | |
| Primitive: | No | |
| Nilpotency class: | $-1$ (not nilpotent) | |
| Generators: | (1,18,2,17)(3,16,4,15)(5,14,6,13)(7,9)(8,10), (1,14,8,4,16,9,6,17,12,2,13,7,3,15,10,5,18,11) | |
| $|\Aut(F/K)|$: | $2$ |
Low degree resolvents
|G/N| Galois groups for stem field(s) 2: $C_2$ x 3 4: $C_2^2$ 6: $S_3$ 12: $D_{6}$ 18: $D_{9}$ 24: $S_4$ 36: $D_{18}$ 48: $S_4\times C_2$ 72: 18T38 Resolvents shown for degrees $\leq 47$
Subfields
Degree 2: None
Degree 3: $S_3$
Degree 6: $S_4\times C_2$
Degree 9: $D_{9}$
Low degree siblings
18T67Siblings are shown with degree $\leq 47$
A number field with this Galois group has no arithmetically equivalent fields.
Conjugacy Classes
| Cycle Type | Size | Order | Representative |
| $ 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1 $ | $1$ | $1$ | $()$ |
| $ 2, 2, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1 $ | $3$ | $2$ | $(13,14)(15,16)(17,18)$ |
| $ 2, 2, 2, 2, 2, 2, 1, 1, 1, 1, 1, 1 $ | $3$ | $2$ | $( 7, 8)( 9,10)(11,12)(13,14)(15,16)(17,18)$ |
| $ 4, 4, 4, 2, 2, 1, 1 $ | $18$ | $4$ | $( 3, 6)( 4, 5)( 7,17, 8,18)( 9,15,10,16)(11,14,12,13)$ |
| $ 2, 2, 2, 2, 2, 2, 2, 2, 1, 1 $ | $18$ | $2$ | $( 3, 6)( 4, 5)( 7,17)( 8,18)( 9,15)(10,16)(11,14)(12,13)$ |
| $ 2, 2, 2, 2, 2, 2, 2, 2, 2 $ | $1$ | $2$ | $( 1, 2)( 3, 4)( 5, 6)( 7, 8)( 9,10)(11,12)(13,14)(15,16)(17,18)$ |
| $ 4, 4, 4, 2, 2, 2 $ | $18$ | $4$ | $( 1, 2)( 3, 5)( 4, 6)( 7,17, 8,18)( 9,15,10,16)(11,14,12,13)$ |
| $ 2, 2, 2, 2, 2, 2, 2, 2, 2 $ | $18$ | $2$ | $( 1, 2)( 3, 5)( 4, 6)( 7,17)( 8,18)( 9,15)(10,16)(11,14)(12,13)$ |
| $ 6, 3, 3, 3, 3 $ | $6$ | $6$ | $( 1, 3, 6)( 2, 4, 5)( 7, 9,11)( 8,10,12)(13,15,18,14,16,17)$ |
| $ 3, 3, 3, 3, 3, 3 $ | $2$ | $3$ | $( 1, 3, 6)( 2, 4, 5)( 7, 9,11)( 8,10,12)(13,16,18)(14,15,17)$ |
| $ 6, 6, 3, 3 $ | $6$ | $6$ | $( 1, 3, 6)( 2, 4, 5)( 7,10,11, 8, 9,12)(13,15,18,14,16,17)$ |
| $ 6, 6, 6 $ | $2$ | $6$ | $( 1, 4, 6, 2, 3, 5)( 7,10,11, 8, 9,12)(13,15,18,14,16,17)$ |
| $ 18 $ | $8$ | $18$ | $( 1, 7,15, 5,12,13, 3, 9,17, 2, 8,16, 6,11,14, 4,10,18)$ |
| $ 9, 9 $ | $8$ | $9$ | $( 1, 7,15, 6,11,14, 3, 9,17)( 2, 8,16, 5,12,13, 4,10,18)$ |
| $ 9, 9 $ | $8$ | $9$ | $( 1, 9,14, 6, 7,17, 3,11,15)( 2,10,13, 5, 8,18, 4,12,16)$ |
| $ 18 $ | $8$ | $18$ | $( 1, 9,14, 5, 8,18, 3,11,15, 2,10,13, 6, 7,17, 4,12,16)$ |
| $ 9, 9 $ | $8$ | $9$ | $( 1,11,18, 6, 9,16, 3, 7,13)( 2,12,17, 5,10,15, 4, 8,14)$ |
| $ 18 $ | $8$ | $18$ | $( 1,11,18, 5,10,15, 3, 7,13, 2,12,17, 6, 9,16, 4, 8,14)$ |
Group invariants
| Order: | $144=2^{4} \cdot 3^{2}$ | |
| Cyclic: | No | |
| Abelian: | No | |
| Solvable: | Yes | |
| GAP id: | [144, 109] |
| Character table: |
2 4 4 4 3 3 4 3 3 3 3 3 3 1 1 1 1 1 1
3 2 1 1 . . 2 . . 1 2 1 2 2 2 2 2 2 2
1a 2a 2b 4a 2c 2d 4b 2e 6a 3a 6b 6c 18a 9a 9b 18b 9c 18c
2P 1a 1a 1a 2b 1a 1a 2b 1a 3a 3a 3a 3a 9b 9b 9c 9c 9a 9a
3P 1a 2a 2b 4a 2c 2d 4b 2e 2a 1a 2b 2d 6c 3a 3a 6c 3a 6c
5P 1a 2a 2b 4a 2c 2d 4b 2e 6a 3a 6b 6c 18c 9c 9a 18a 9b 18b
7P 1a 2a 2b 4a 2c 2d 4b 2e 6a 3a 6b 6c 18b 9b 9c 18c 9a 18a
11P 1a 2a 2b 4a 2c 2d 4b 2e 6a 3a 6b 6c 18b 9b 9c 18c 9a 18a
13P 1a 2a 2b 4a 2c 2d 4b 2e 6a 3a 6b 6c 18c 9c 9a 18a 9b 18b
17P 1a 2a 2b 4a 2c 2d 4b 2e 6a 3a 6b 6c 18a 9a 9b 18b 9c 18c
X.1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
X.2 1 -1 1 -1 1 -1 1 -1 -1 1 1 -1 -1 1 1 -1 1 -1
X.3 1 -1 1 1 -1 -1 -1 1 -1 1 1 -1 -1 1 1 -1 1 -1
X.4 1 1 1 -1 -1 1 -1 -1 1 1 1 1 1 1 1 1 1 1
X.5 2 2 2 . . 2 . . 2 2 2 2 -1 -1 -1 -1 -1 -1
X.6 2 -2 2 . . -2 . . -2 2 2 -2 1 -1 -1 1 -1 1
X.7 2 2 2 . . 2 . . -1 -1 -1 -1 A A C C B B
X.8 2 2 2 . . 2 . . -1 -1 -1 -1 B B A A C C
X.9 2 2 2 . . 2 . . -1 -1 -1 -1 C C B B A A
X.10 2 -2 2 . . -2 . . 1 -1 -1 1 -A A C -C B -B
X.11 2 -2 2 . . -2 . . 1 -1 -1 1 -B B A -A C -C
X.12 2 -2 2 . . -2 . . 1 -1 -1 1 -C C B -B A -A
X.13 3 -1 -1 -1 1 3 -1 1 -1 3 -1 3 . . . . . .
X.14 3 -1 -1 1 -1 3 1 -1 -1 3 -1 3 . . . . . .
X.15 3 1 -1 -1 -1 -3 1 1 1 3 -1 -3 . . . . . .
X.16 3 1 -1 1 1 -3 -1 -1 1 3 -1 -3 . . . . . .
X.17 6 -2 -2 . . 6 . . 1 -3 1 -3 . . . . . .
X.18 6 2 -2 . . -6 . . -1 -3 1 3 . . . . . .
A = E(9)^4+E(9)^5
B = E(9)^2+E(9)^7
C = -E(9)^2-E(9)^4-E(9)^5-E(9)^7
|