Properties

Label 18T662
Order \(27648\)
n \(18\)
Cyclic No
Abelian No
Solvable Yes
Primitive No
$p$-group No

Related objects

Learn more about

Group action invariants

Degree $n$ :  $18$
Transitive number $t$ :  $662$
Parity:  $-1$
Primitive:  No
Nilpotency class:  $-1$ (not nilpotent)
Generators:  (1,7,13)(2,8,14)(3,10,16,4,9,15)(5,12,18,6,11,17), (1,2)(5,8,10,6,7,9)(11,15,13)(12,16,14)(17,18), (17,18), (5,12,6,11)(7,13)(8,14)(9,15)(10,16)
$|\Aut(F/K)|$:  $2$

Low degree resolvents

|G/N|Galois groups for stem field(s)
2:  $C_2$ x 3
4:  $C_2^2$
6:  $S_3$ x 4
12:  $D_{6}$ x 4
18:  $C_3^2:C_2$
24:  $S_4$
36:  18T12
48:  $S_4\times C_2$
54:  $(C_3^2:C_3):C_2$
72:  12T44
108:  18T52
144:  18T66
216:  18T107
432:  18T156
3456:  12T252
6912:  18T521
13824:  18T594

Resolvents shown for degrees $\leq 47$

Subfields

Degree 2: None

Degree 3: $S_3$

Degree 6: None

Degree 9: $(C_3^2:C_3):C_2$

Low degree siblings

18T662

Siblings are shown with degree $\leq 47$

A number field with this Galois group has no arithmetically equivalent fields.

Conjugacy Classes

There are 96 conjugacy classes of elements. Data not shown.

Group invariants

Order:  $27648=2^{10} \cdot 3^{3}$
Cyclic:  No
Abelian:  No
Solvable:  Yes
GAP id:  Data not available
Character table: Data not available.