Group action invariants
| Degree $n$ : | $18$ | |
| Transitive number $t$ : | $66$ | |
| Group : | $C_2\times C_3:S_4$ | |
| Parity: | $-1$ | |
| Primitive: | No | |
| Nilpotency class: | $-1$ (not nilpotent) | |
| Generators: | (1,11)(2,12)(3,10)(4,9)(5,8)(6,7)(15,17)(16,18), (1,10,16,2,9,15)(3,11,17,4,12,18)(5,7,13,6,8,14), (1,16)(2,15)(3,14)(4,13)(5,18)(6,17)(7,11)(8,12)(9,10) | |
| $|\Aut(F/K)|$: | $2$ |
Low degree resolvents
|G/N| Galois groups for stem field(s) 2: $C_2$ x 3 4: $C_2^2$ 6: $S_3$ x 4 12: $D_{6}$ x 4 18: $C_3^2:C_2$ 24: $S_4$ 36: 18T12 48: $S_4\times C_2$ 72: 12T44 Resolvents shown for degrees $\leq 47$
Subfields
Degree 2: None
Degree 3: $S_3$ x 4
Degree 6: $S_4\times C_2$
Degree 9: $C_3^2:C_2$
Low degree siblings
18T66Siblings are shown with degree $\leq 47$
A number field with this Galois group has no arithmetically equivalent fields.
Conjugacy Classes
| Cycle Type | Size | Order | Representative |
| $ 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1 $ | $1$ | $1$ | $()$ |
| $ 2, 2, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1 $ | $3$ | $2$ | $(13,14)(15,16)(17,18)$ |
| $ 2, 2, 2, 2, 2, 2, 1, 1, 1, 1, 1, 1 $ | $3$ | $2$ | $( 7, 8)( 9,10)(11,12)(13,14)(15,16)(17,18)$ |
| $ 2, 2, 2, 2, 2, 2, 2, 2, 1, 1 $ | $18$ | $2$ | $( 3, 6)( 4, 5)( 7,17)( 8,18)( 9,16)(10,15)(11,13)(12,14)$ |
| $ 4, 4, 4, 2, 2, 1, 1 $ | $18$ | $4$ | $( 3, 6)( 4, 5)( 7,17, 8,18)( 9,16,10,15)(11,13,12,14)$ |
| $ 2, 2, 2, 2, 2, 2, 2, 2, 2 $ | $1$ | $2$ | $( 1, 2)( 3, 4)( 5, 6)( 7, 8)( 9,10)(11,12)(13,14)(15,16)(17,18)$ |
| $ 2, 2, 2, 2, 2, 2, 2, 2, 2 $ | $18$ | $2$ | $( 1, 2)( 3, 5)( 4, 6)( 7,17)( 8,18)( 9,16)(10,15)(11,13)(12,14)$ |
| $ 4, 4, 4, 2, 2, 2 $ | $18$ | $4$ | $( 1, 2)( 3, 5)( 4, 6)( 7,17, 8,18)( 9,16,10,15)(11,13,12,14)$ |
| $ 6, 6, 6 $ | $2$ | $6$ | $( 1, 3, 5, 2, 4, 6)( 7, 9,12, 8,10,11)(13,15,18,14,16,17)$ |
| $ 6, 6, 3, 3 $ | $6$ | $6$ | $( 1, 3, 5, 2, 4, 6)( 7, 9,12, 8,10,11)(13,16,18)(14,15,17)$ |
| $ 6, 3, 3, 3, 3 $ | $6$ | $6$ | $( 1, 3, 5, 2, 4, 6)( 7,10,12)( 8, 9,11)(13,16,18)(14,15,17)$ |
| $ 3, 3, 3, 3, 3, 3 $ | $2$ | $3$ | $( 1, 4, 5)( 2, 3, 6)( 7,10,12)( 8, 9,11)(13,16,18)(14,15,17)$ |
| $ 3, 3, 3, 3, 3, 3 $ | $8$ | $3$ | $( 1, 7,17)( 2, 8,18)( 3, 9,13)( 4,10,14)( 5,12,15)( 6,11,16)$ |
| $ 6, 6, 6 $ | $8$ | $6$ | $( 1, 7,17, 2, 8,18)( 3, 9,13, 4,10,14)( 5,12,15, 6,11,16)$ |
| $ 6, 6, 6 $ | $8$ | $6$ | $( 1, 9,15, 2,10,16)( 3,12,18, 4,11,17)( 5, 8,14, 6, 7,13)$ |
| $ 3, 3, 3, 3, 3, 3 $ | $8$ | $3$ | $( 1, 9,15)( 2,10,16)( 3,12,18)( 4,11,17)( 5, 8,14)( 6, 7,13)$ |
| $ 3, 3, 3, 3, 3, 3 $ | $8$ | $3$ | $( 1,11,13)( 2,12,14)( 3, 7,15)( 4, 8,16)( 5, 9,18)( 6,10,17)$ |
| $ 6, 6, 6 $ | $8$ | $6$ | $( 1,11,13, 2,12,14)( 3, 7,15, 4, 8,16)( 5, 9,18, 6,10,17)$ |
Group invariants
| Order: | $144=2^{4} \cdot 3^{2}$ | |
| Cyclic: | No | |
| Abelian: | No | |
| Solvable: | Yes | |
| GAP id: | [144, 189] |
| Character table: |
2 4 4 4 3 3 4 3 3 3 3 3 3 1 1 1 1 1 1
3 2 1 1 . . 2 . . 2 1 1 2 2 2 2 2 2 2
1a 2a 2b 2c 4a 2d 2e 4b 6a 6b 6c 3a 3b 6d 6e 3c 3d 6f
2P 1a 1a 1a 1a 2b 1a 1a 2b 3a 3a 3a 3a 3b 3b 3c 3c 3d 3d
3P 1a 2a 2b 2c 4a 2d 2e 4b 2d 2b 2a 1a 1a 2d 2d 1a 1a 2d
5P 1a 2a 2b 2c 4a 2d 2e 4b 6a 6b 6c 3a 3b 6d 6e 3c 3d 6f
X.1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
X.2 1 -1 1 -1 1 -1 1 -1 -1 1 -1 1 1 -1 -1 1 1 -1
X.3 1 -1 1 1 -1 -1 -1 1 -1 1 -1 1 1 -1 -1 1 1 -1
X.4 1 1 1 -1 -1 1 -1 -1 1 1 1 1 1 1 1 1 1 1
X.5 2 2 2 . . 2 . . 2 2 2 2 -1 -1 -1 -1 -1 -1
X.6 2 -2 2 . . -2 . . -2 2 -2 2 -1 1 1 -1 -1 1
X.7 2 2 2 . . 2 . . -1 -1 -1 -1 2 2 -1 -1 -1 -1
X.8 2 -2 2 . . -2 . . 1 -1 1 -1 2 -2 1 -1 -1 1
X.9 2 -2 2 . . -2 . . 1 -1 1 -1 -1 1 -2 2 -1 1
X.10 2 -2 2 . . -2 . . 1 -1 1 -1 -1 1 1 -1 2 -2
X.11 2 2 2 . . 2 . . -1 -1 -1 -1 -1 -1 -1 -1 2 2
X.12 2 2 2 . . 2 . . -1 -1 -1 -1 -1 -1 2 2 -1 -1
X.13 3 -1 -1 -1 1 3 -1 1 3 -1 -1 3 . . . . . .
X.14 3 -1 -1 1 -1 3 1 -1 3 -1 -1 3 . . . . . .
X.15 3 1 -1 -1 -1 -3 1 1 -3 -1 1 3 . . . . . .
X.16 3 1 -1 1 1 -3 -1 -1 -3 -1 1 3 . . . . . .
X.17 6 -2 -2 . . 6 . . -3 1 1 -3 . . . . . .
X.18 6 2 -2 . . -6 . . 3 1 -1 -3 . . . . . .
|