Properties

Label 18T658
Order \(27648\)
n \(18\)
Cyclic No
Abelian No
Solvable Yes
Primitive No
$p$-group No

Related objects

Learn more about

Group action invariants

Degree $n$ :  $18$
Transitive number $t$ :  $658$
Parity:  $-1$
Primitive:  No
Nilpotency class:  $-1$ (not nilpotent)
Generators:  (1,8,3,5,18,10,2,7,4,6,17,9)(11,13)(12,14), (1,7,13,2,8,14)(3,10,15,4,9,16)(5,12,18,6,11,17)
$|\Aut(F/K)|$:  $2$

Low degree resolvents

|G/N|Galois groups for stem field(s)
2:  $C_2$ x 3
3:  $C_3$
4:  $C_2^2$
6:  $S_3$, $C_6$ x 3
12:  $D_{6}$, $C_6\times C_2$
18:  $S_3\times C_3$
24:  $S_4$
36:  $C_6\times S_3$
48:  $S_4\times C_2$
54:  $C_3^2 : C_6$
72:  12T45
108:  18T41
144:  18T61
216:  18T97
432:  18T149
3456:  12T251
6912:  18T513
13824:  18T590

Resolvents shown for degrees $\leq 47$

Subfields

Degree 2: None

Degree 3: $S_3$

Degree 6: None

Degree 9: $C_3^2 : C_6$

Low degree siblings

18T658

Siblings are shown with degree $\leq 47$

A number field with this Galois group has no arithmetically equivalent fields.

Conjugacy Classes

There are 96 conjugacy classes of elements. Data not shown.

Group invariants

Order:  $27648=2^{10} \cdot 3^{3}$
Cyclic:  No
Abelian:  No
Solvable:  Yes
GAP id:  Data not available
Character table: Data not available.