Group action invariants
| Degree $n$ : | $18$ | |
| Transitive number $t$ : | $656$ | |
| Parity: | $-1$ | |
| Primitive: | No | |
| Nilpotency class: | $-1$ (not nilpotent) | |
| Generators: | (3,12,16,18,10,5,4,11,15,17,9,6)(7,13,8,14), (1,3,17,7,9,5,13,15,12,2,4,18,8,10,6,14,16,11) | |
| $|\Aut(F/K)|$: | $2$ |
Low degree resolvents
|G/N| Galois groups for stem field(s) 2: $C_2$ x 3 3: $C_3$ 4: $C_2^2$ 6: $S_3$, $C_6$ x 3 12: $D_{6}$, $C_6\times C_2$ 18: $S_3\times C_3$ 24: $S_4$ 36: $C_6\times S_3$ 48: $S_4\times C_2$ 54: $(C_9:C_3):C_2$ 72: 12T45 108: 18T45 144: 18T61 216: 18T98 432: 18T147 3456: 12T254 6912: 18T512 13824: 18T588 Resolvents shown for degrees $\leq 47$
Subfields
Degree 2: None
Degree 3: $S_3$
Degree 6: None
Degree 9: $(C_9:C_3):C_2$
Low degree siblings
18T656Siblings are shown with degree $\leq 47$
A number field with this Galois group has no arithmetically equivalent fields.
Conjugacy Classes
There are 88 conjugacy classes of elements. Data not shown.
Group invariants
| Order: | $27648=2^{10} \cdot 3^{3}$ | |
| Cyclic: | No | |
| Abelian: | No | |
| Solvable: | Yes | |
| GAP id: | Data not available |
| Character table: Data not available. |