Properties

Label 18T656
Order \(27648\)
n \(18\)
Cyclic No
Abelian No
Solvable Yes
Primitive No
$p$-group No

Related objects

Learn more about

Group action invariants

Degree $n$ :  $18$
Transitive number $t$ :  $656$
Parity:  $-1$
Primitive:  No
Nilpotency class:  $-1$ (not nilpotent)
Generators:  (3,12,16,18,10,5,4,11,15,17,9,6)(7,13,8,14), (1,3,17,7,9,5,13,15,12,2,4,18,8,10,6,14,16,11)
$|\Aut(F/K)|$:  $2$

Low degree resolvents

|G/N|Galois groups for stem field(s)
2:  $C_2$ x 3
3:  $C_3$
4:  $C_2^2$
6:  $S_3$, $C_6$ x 3
12:  $D_{6}$, $C_6\times C_2$
18:  $S_3\times C_3$
24:  $S_4$
36:  $C_6\times S_3$
48:  $S_4\times C_2$
54:  $(C_9:C_3):C_2$
72:  12T45
108:  18T45
144:  18T61
216:  18T98
432:  18T147
3456:  12T254
6912:  18T512
13824:  18T588

Resolvents shown for degrees $\leq 47$

Subfields

Degree 2: None

Degree 3: $S_3$

Degree 6: None

Degree 9: $(C_9:C_3):C_2$

Low degree siblings

18T656

Siblings are shown with degree $\leq 47$

A number field with this Galois group has no arithmetically equivalent fields.

Conjugacy Classes

There are 88 conjugacy classes of elements. Data not shown.

Group invariants

Order:  $27648=2^{10} \cdot 3^{3}$
Cyclic:  No
Abelian:  No
Solvable:  Yes
GAP id:  Data not available
Character table: Data not available.