Group action invariants
| Degree $n$ : | $18$ | |
| Transitive number $t$ : | $65$ | |
| Group : | $S_3\times S_4$ | |
| Parity: | $-1$ | |
| Primitive: | No | |
| Nilpotency class: | $-1$ (not nilpotent) | |
| Generators: | (1,11,16,4,10,17)(2,12,15,3,9,18)(5,8,14,6,7,13), (1,14,4,15,5,18,2,13,3,16,6,17)(7,11,10,8,12,9), (1,15)(2,16)(3,13)(4,14)(5,17)(6,18)(7,11)(8,12)(9,10) | |
| $|\Aut(F/K)|$: | $2$ |
Low degree resolvents
|G/N| Galois groups for stem field(s) 2: $C_2$ x 3 4: $C_2^2$ 6: $S_3$ x 2 12: $D_{6}$ x 2 24: $S_4$ 36: $S_3^2$ 48: $S_4\times C_2$ Resolvents shown for degrees $\leq 47$
Subfields
Degree 2: None
Degree 3: $S_3$ x 2
Degree 6: $S_4\times C_2$
Degree 9: $S_3^2$
Low degree siblings
12T83, 18T69, 18T70, 18T72Siblings are shown with degree $\leq 47$
A number field with this Galois group has no arithmetically equivalent fields.
Conjugacy Classes
| Cycle Type | Size | Order | Representative |
| $ 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1 $ | $1$ | $1$ | $()$ |
| $ 2, 2, 2, 2, 2, 2, 1, 1, 1, 1, 1, 1 $ | $3$ | $2$ | $( 7, 8)( 9,10)(11,12)(13,14)(15,16)(17,18)$ |
| $ 2, 2, 2, 2, 2, 2, 1, 1, 1, 1, 1, 1 $ | $6$ | $2$ | $( 7,13)( 8,14)( 9,16)(10,15)(11,18)(12,17)$ |
| $ 2, 2, 2, 2, 2, 2, 2, 1, 1, 1, 1 $ | $9$ | $2$ | $( 3, 5)( 4, 6)( 7,11)( 8,12)( 9,10)(13,17)(14,18)$ |
| $ 4, 4, 4, 2, 2, 1, 1 $ | $18$ | $4$ | $( 3, 5)( 4, 6)( 7,17, 8,18)( 9,16,10,15)(11,14,12,13)$ |
| $ 4, 4, 4, 2, 2, 2 $ | $6$ | $4$ | $( 1, 2)( 3, 4)( 5, 6)( 7,13, 8,14)( 9,16,10,15)(11,18,12,17)$ |
| $ 2, 2, 2, 2, 2, 2, 2, 2, 2 $ | $3$ | $2$ | $( 1, 2)( 3, 6)( 4, 5)( 7,11)( 8,12)( 9,10)(13,18)(14,17)(15,16)$ |
| $ 2, 2, 2, 2, 2, 2, 2, 2, 2 $ | $18$ | $2$ | $( 1, 2)( 3, 6)( 4, 5)( 7,17)( 8,18)( 9,16)(10,15)(11,14)(12,13)$ |
| $ 6, 6, 3, 3 $ | $6$ | $6$ | $( 1, 3, 5)( 2, 4, 6)( 7, 9,12, 8,10,11)(13,16,17,14,15,18)$ |
| $ 3, 3, 3, 3, 3, 3 $ | $2$ | $3$ | $( 1, 3, 5)( 2, 4, 6)( 7,10,12)( 8, 9,11)(13,15,17)(14,16,18)$ |
| $ 6, 6, 3, 3 $ | $12$ | $6$ | $( 1, 3, 5)( 2, 4, 6)( 7,15,12,13,10,17)( 8,16,11,14, 9,18)$ |
| $ 12, 6 $ | $12$ | $12$ | $( 1, 4, 5, 2, 3, 6)( 7,15,11,14,10,17, 8,16,12,13, 9,18)$ |
| $ 3, 3, 3, 3, 3, 3 $ | $16$ | $3$ | $( 1, 7,17)( 2, 8,18)( 3,10,13)( 4, 9,14)( 5,12,15)( 6,11,16)$ |
| $ 6, 6, 6 $ | $24$ | $6$ | $( 1, 7,15, 6, 9,14)( 2, 8,16, 5,10,13)( 3,12,17, 4,11,18)$ |
| $ 3, 3, 3, 3, 3, 3 $ | $8$ | $3$ | $( 1, 9,16)( 2,10,15)( 3,11,18)( 4,12,17)( 5, 8,14)( 6, 7,13)$ |
Group invariants
| Order: | $144=2^{4} \cdot 3^{2}$ | |
| Cyclic: | No | |
| Abelian: | No | |
| Solvable: | Yes | |
| GAP id: | [144, 183] |
| Character table: |
2 4 4 3 4 3 3 4 3 3 3 2 2 . 1 1
3 2 1 1 . . 1 1 . 1 2 1 1 2 1 2
1a 2a 2b 2c 4a 4b 2d 2e 6a 3a 6b 12a 3b 6c 3c
2P 1a 1a 1a 1a 2a 2a 1a 1a 3a 3a 3a 6a 3b 3c 3c
3P 1a 2a 2b 2c 4a 4b 2d 2e 2a 1a 2b 4b 1a 2d 1a
5P 1a 2a 2b 2c 4a 4b 2d 2e 6a 3a 6b 12a 3b 6c 3c
7P 1a 2a 2b 2c 4a 4b 2d 2e 6a 3a 6b 12a 3b 6c 3c
11P 1a 2a 2b 2c 4a 4b 2d 2e 6a 3a 6b 12a 3b 6c 3c
X.1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
X.2 1 1 -1 -1 1 -1 -1 1 1 1 -1 -1 1 -1 1
X.3 1 1 -1 1 -1 -1 1 -1 1 1 -1 -1 1 1 1
X.4 1 1 1 -1 -1 1 -1 -1 1 1 1 1 1 -1 1
X.5 2 2 . -2 . . -2 . 2 2 . . -1 1 -1
X.6 2 2 . 2 . . 2 . 2 2 . . -1 -1 -1
X.7 2 2 2 . . 2 . . -1 -1 -1 -1 -1 . 2
X.8 2 2 -2 . . -2 . . -1 -1 1 1 -1 . 2
X.9 3 -1 -1 -1 1 1 3 -1 -1 3 -1 1 . . .
X.10 3 -1 -1 1 -1 1 -3 1 -1 3 -1 1 . . .
X.11 3 -1 1 -1 -1 -1 3 1 -1 3 1 -1 . . .
X.12 3 -1 1 1 1 -1 -3 -1 -1 3 1 -1 . . .
X.13 4 4 . . . . . . -2 -2 . . 1 . -2
X.14 6 -2 -2 . . 2 . . 1 -3 1 -1 . . .
X.15 6 -2 2 . . -2 . . 1 -3 -1 1 . . .
|