Group action invariants
| Degree $n$ : | $18$ | |
| Transitive number $t$ : | $646$ | |
| Parity: | $1$ | |
| Primitive: | No | |
| Nilpotency class: | $-1$ (not nilpotent) | |
| Generators: | (1,13,9,2,14,10)(3,16,11)(4,15,12)(5,17,8,6,18,7), (1,18,12,4,15,9,6,13,7)(2,17,11,3,16,10,5,14,8) | |
| $|\Aut(F/K)|$: | $2$ |
Low degree resolvents
|G/N| Galois groups for stem field(s) 3: $C_3$ 12: $A_4$ 324: $((C_3 \times (C_3^2 : C_2)) : C_2) : C_3$ Resolvents shown for degrees $\leq 47$
Subfields
Degree 2: None
Degree 3: $C_3$
Degree 6: None
Low degree siblings
12T284, 18T645, 18T647 x 2Siblings are shown with degree $\leq 47$
A number field with this Galois group has no arithmetically equivalent fields.
Conjugacy Classes
| Cycle Type | Size | Order | Representative |
| $ 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1 $ | $1$ | $1$ | $()$ |
| $ 2, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1 $ | $9$ | $2$ | $( 1, 2)( 3, 4)$ |
| $ 2, 2, 2, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1 $ | $27$ | $2$ | $( 1, 2)( 3, 4)(15,16)(17,18)$ |
| $ 2, 2, 2, 2, 2, 2, 1, 1, 1, 1, 1, 1 $ | $27$ | $2$ | $( 1, 2)( 3, 4)( 9,10)(11,12)(15,16)(17,18)$ |
| $ 3, 3, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1 $ | $24$ | $3$ | $( 1, 5, 3)( 2, 6, 4)$ |
| $ 3, 3, 2, 2, 1, 1, 1, 1, 1, 1, 1, 1 $ | $72$ | $6$ | $( 1, 5, 3)( 2, 6, 4)(15,16)(17,18)$ |
| $ 3, 3, 2, 2, 1, 1, 1, 1, 1, 1, 1, 1 $ | $72$ | $6$ | $( 1, 5, 3)( 2, 6, 4)( 9,10)(11,12)$ |
| $ 3, 3, 2, 2, 2, 2, 1, 1, 1, 1 $ | $216$ | $6$ | $( 1, 5, 3)( 2, 6, 4)( 9,10)(11,12)(15,16)(17,18)$ |
| $ 3, 3, 3, 3, 1, 1, 1, 1, 1, 1 $ | $192$ | $3$ | $( 1, 5, 3)( 2, 6, 4)(13,15,17)(14,16,18)$ |
| $ 3, 3, 3, 3, 2, 2, 1, 1 $ | $576$ | $6$ | $( 1, 5, 3)( 2, 6, 4)( 9,10)(11,12)(13,15,17)(14,16,18)$ |
| $ 3, 3, 3, 3, 3, 3 $ | $256$ | $3$ | $( 1, 5, 3)( 2, 6, 4)( 7, 9,11)( 8,10,12)(13,15,17)(14,16,18)$ |
| $ 3, 3, 3, 3, 3, 3 $ | $256$ | $3$ | $( 1, 3, 5)( 2, 4, 6)( 7, 9,11)( 8,10,12)(13,15,17)(14,16,18)$ |
| $ 2, 2, 2, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1 $ | $108$ | $2$ | $( 3, 6)( 4, 5)( 7,12)( 8,11)$ |
| $ 4, 2, 2, 2, 1, 1, 1, 1, 1, 1, 1, 1 $ | $108$ | $4$ | $( 1, 2)( 3, 6, 4, 5)( 7,12)( 8,11)$ |
| $ 2, 2, 2, 2, 2, 2, 1, 1, 1, 1, 1, 1 $ | $324$ | $2$ | $( 3, 6)( 4, 5)( 7,12)( 8,11)(15,16)(17,18)$ |
| $ 4, 2, 2, 2, 2, 2, 1, 1, 1, 1 $ | $324$ | $4$ | $( 1, 2)( 3, 6, 4, 5)( 7,12)( 8,11)(15,16)(17,18)$ |
| $ 4, 2, 2, 2, 1, 1, 1, 1, 1, 1, 1, 1 $ | $108$ | $4$ | $( 3, 6)( 4, 5)( 7,11, 8,12)( 9,10)$ |
| $ 4, 4, 2, 2, 1, 1, 1, 1, 1, 1 $ | $108$ | $4$ | $( 1, 2)( 3, 6, 4, 5)( 7,11, 8,12)( 9,10)$ |
| $ 4, 2, 2, 2, 2, 2, 1, 1, 1, 1 $ | $324$ | $4$ | $( 3, 6)( 4, 5)( 7,11, 8,12)( 9,10)(15,16)(17,18)$ |
| $ 4, 4, 2, 2, 2, 2, 1, 1 $ | $324$ | $4$ | $( 1, 2)( 3, 6, 4, 5)( 7,11, 8,12)( 9,10)(15,16)(17,18)$ |
| $ 3, 3, 2, 2, 2, 2, 1, 1, 1, 1 $ | $864$ | $6$ | $( 3, 6)( 4, 5)( 7,12)( 8,11)(13,15,17)(14,16,18)$ |
| $ 4, 3, 3, 2, 2, 2, 1, 1 $ | $864$ | $12$ | $( 1, 2)( 3, 6, 4, 5)( 7,12)( 8,11)(13,15,17)(14,16,18)$ |
| $ 4, 3, 3, 2, 2, 2, 1, 1 $ | $864$ | $12$ | $( 3, 6)( 4, 5)( 7,11, 8,12)( 9,10)(13,15,17)(14,16,18)$ |
| $ 4, 4, 3, 3, 2, 2 $ | $864$ | $12$ | $( 1, 2)( 3, 6, 4, 5)( 7,11, 8,12)( 9,10)(13,15,17)(14,16,18)$ |
| $ 3, 3, 3, 3, 3, 3 $ | $576$ | $3$ | $( 1, 9,14)( 2,10,13)( 3,11,16)( 4,12,15)( 5, 8,18)( 6, 7,17)$ |
| $ 6, 6, 3, 3 $ | $1728$ | $6$ | $( 1, 9,14, 2,10,13)( 3,11,16, 4,12,15)( 5, 8,18)( 6, 7,17)$ |
| $ 9, 9 $ | $2304$ | $9$ | $( 1, 9,14, 5, 8,18, 3,11,16)( 2,10,13, 6, 7,17, 4,12,15)$ |
| $ 9, 9 $ | $2304$ | $9$ | $( 1, 9,14, 3,11,16, 5, 8,18)( 2,10,13, 4,12,15, 6, 7,17)$ |
| $ 3, 3, 3, 3, 3, 3 $ | $576$ | $3$ | $( 1,14, 9)( 2,13,10)( 3,16,11)( 4,15,12)( 5,18, 8)( 6,17, 7)$ |
| $ 6, 6, 3, 3 $ | $1728$ | $6$ | $( 1,14, 9, 2,13,10)( 3,16,11, 4,15,12)( 5,18, 8)( 6,17, 7)$ |
| $ 9, 9 $ | $2304$ | $9$ | $( 1,14, 9, 5,18, 8, 3,16,11)( 2,13,10, 6,17, 7, 4,15,12)$ |
| $ 9, 9 $ | $2304$ | $9$ | $( 1,14, 9, 3,16,11, 5,18, 8)( 2,13,10, 4,15,12, 6,17, 7)$ |
Group invariants
| Order: | $20736=2^{8} \cdot 3^{4}$ | |
| Cyclic: | No | |
| Abelian: | No | |
| Solvable: | Yes | |
| GAP id: | Data not available |
| Character table: Data not available. |