Group action invariants
| Degree $n$ : | $18$ | |
| Transitive number $t$ : | $63$ | |
| Group : | $C_2\times S_3\wr C_2$ | |
| Parity: | $-1$ | |
| Primitive: | No | |
| Nilpotency class: | $-1$ (not nilpotent) | |
| Generators: | (1,10,6,4)(2,9,5,3)(7,14,18,12)(8,13,17,11), (1,7,12,18,10,15)(2,8,11,17,9,16)(3,5,13)(4,6,14), (1,9,12,2,10,11)(3,7,13,18,5,15)(4,8,14,17,6,16) | |
| $|\Aut(F/K)|$: | $2$ |
Low degree resolvents
|G/N| Galois groups for stem field(s) 2: $C_2$ x 7 4: $C_2^2$ x 7 8: $D_{4}$ x 2, $C_2^3$ 16: $D_4\times C_2$ 72: $C_3^2:D_4$ Resolvents shown for degrees $\leq 47$
Subfields
Degree 2: $C_2$
Degree 3: None
Degree 6: None
Degree 9: $S_3^2:C_2$
Low degree siblings
12T77 x 4, 12T78 x 4, 18T63 x 3Siblings are shown with degree $\leq 47$
A number field with this Galois group has no arithmetically equivalent fields.
Conjugacy Classes
| Cycle Type | Size | Order | Representative |
| $ 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1 $ | $1$ | $1$ | $()$ |
| $ 2, 2, 2, 2, 2, 2, 1, 1, 1, 1, 1, 1 $ | $6$ | $2$ | $( 5,13)( 6,14)( 7,15)( 8,16)( 9,11)(10,12)$ |
| $ 2, 2, 2, 2, 2, 2, 1, 1, 1, 1, 1, 1 $ | $6$ | $2$ | $( 3, 9)( 4,10)( 7,14)( 8,13)(11,17)(12,18)$ |
| $ 4, 4, 4, 4, 1, 1 $ | $18$ | $4$ | $( 3, 9,17,11)( 4,10,18,12)( 5, 8,16,13)( 6, 7,15,14)$ |
| $ 2, 2, 2, 2, 2, 2, 2, 2, 1, 1 $ | $9$ | $2$ | $( 3,17)( 4,18)( 5,16)( 6,15)( 7,14)( 8,13)( 9,11)(10,12)$ |
| $ 2, 2, 2, 2, 2, 2, 2, 2, 2 $ | $1$ | $2$ | $( 1, 2)( 3, 4)( 5, 6)( 7, 8)( 9,10)(11,12)(13,14)(15,16)(17,18)$ |
| $ 2, 2, 2, 2, 2, 2, 2, 2, 2 $ | $6$ | $2$ | $( 1, 2)( 3, 4)( 5,14)( 6,13)( 7,16)( 8,15)( 9,12)(10,11)(17,18)$ |
| $ 2, 2, 2, 2, 2, 2, 2, 2, 2 $ | $6$ | $2$ | $( 1, 2)( 3,10)( 4, 9)( 5, 6)( 7,13)( 8,14)(11,18)(12,17)(15,16)$ |
| $ 4, 4, 4, 4, 2 $ | $18$ | $4$ | $( 1, 2)( 3,10,17,12)( 4, 9,18,11)( 5, 7,16,14)( 6, 8,15,13)$ |
| $ 2, 2, 2, 2, 2, 2, 2, 2, 2 $ | $9$ | $2$ | $( 1, 2)( 3,18)( 4,17)( 5,15)( 6,16)( 7,13)( 8,14)( 9,12)(10,11)$ |
| $ 6, 6, 6 $ | $12$ | $6$ | $( 1, 3, 6, 8,15,11)( 2, 4, 5, 7,16,12)( 9,18,13,10,17,14)$ |
| $ 6, 6, 6 $ | $4$ | $6$ | $( 1, 3,18, 2, 4,17)( 5, 7, 9, 6, 8,10)(11,14,16,12,13,15)$ |
| $ 6, 6, 6 $ | $12$ | $6$ | $( 1, 3,18, 2, 4,17)( 5,15, 9,14, 8,12)( 6,16,10,13, 7,11)$ |
| $ 6, 6, 3, 3 $ | $12$ | $6$ | $( 1, 4, 6, 7,15,12)( 2, 3, 5, 8,16,11)( 9,17,13)(10,18,14)$ |
| $ 3, 3, 3, 3, 3, 3 $ | $4$ | $3$ | $( 1, 4,18)( 2, 3,17)( 5, 8, 9)( 6, 7,10)(11,13,16)(12,14,15)$ |
| $ 6, 6, 3, 3 $ | $12$ | $6$ | $( 1, 4,18)( 2, 3,17)( 5,16, 9,13, 8,11)( 6,15,10,14, 7,12)$ |
| $ 6, 6, 6 $ | $4$ | $6$ | $( 1, 5,15, 2, 6,16)( 3, 7,11, 4, 8,12)( 9,14,17,10,13,18)$ |
| $ 3, 3, 3, 3, 3, 3 $ | $4$ | $3$ | $( 1, 6,15)( 2, 5,16)( 3, 8,11)( 4, 7,12)( 9,13,17)(10,14,18)$ |
Group invariants
| Order: | $144=2^{4} \cdot 3^{2}$ | |
| Cyclic: | No | |
| Abelian: | No | |
| Solvable: | Yes | |
| GAP id: | [144, 186] |
| Character table: |
2 4 3 3 3 4 4 3 3 3 4 2 2 2 2 2 2 2 2
3 2 1 1 . . 2 1 1 . . 1 2 1 1 2 1 2 2
1a 2a 2b 4a 2c 2d 2e 2f 4b 2g 6a 6b 6c 6d 3a 6e 6f 3b
2P 1a 1a 1a 2c 1a 1a 1a 1a 2c 1a 3b 3a 3a 3b 3a 3a 3b 3b
3P 1a 2a 2b 4a 2c 2d 2e 2f 4b 2g 2f 2d 2e 2b 1a 2a 2d 1a
5P 1a 2a 2b 4a 2c 2d 2e 2f 4b 2g 6a 6b 6c 6d 3a 6e 6f 3b
X.1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
X.2 1 -1 -1 1 1 -1 1 1 -1 -1 1 -1 1 -1 1 -1 -1 1
X.3 1 -1 -1 1 1 1 -1 -1 1 1 -1 1 -1 -1 1 -1 1 1
X.4 1 -1 1 -1 1 -1 1 -1 1 -1 -1 -1 1 1 1 -1 -1 1
X.5 1 -1 1 -1 1 1 -1 1 -1 1 1 1 -1 1 1 -1 1 1
X.6 1 1 -1 -1 1 -1 -1 1 1 -1 1 -1 -1 -1 1 1 -1 1
X.7 1 1 -1 -1 1 1 1 -1 -1 1 -1 1 1 -1 1 1 1 1
X.8 1 1 1 1 1 -1 -1 -1 -1 -1 -1 -1 -1 1 1 1 -1 1
X.9 2 . . . -2 -2 . . . 2 . -2 . . 2 . -2 2
X.10 2 . . . -2 2 . . . -2 . 2 . . 2 . 2 2
X.11 4 -2 . . . -4 2 . . . . -1 -1 . 1 1 2 -2
X.12 4 -2 . . . 4 -2 . . . . 1 1 . 1 1 -2 -2
X.13 4 . -2 . . -4 . 2 . . -1 2 . 1 -2 . -1 1
X.14 4 . -2 . . 4 . -2 . . 1 -2 . 1 -2 . 1 1
X.15 4 . 2 . . -4 . -2 . . 1 2 . -1 -2 . -1 1
X.16 4 . 2 . . 4 . 2 . . -1 -2 . -1 -2 . 1 1
X.17 4 2 . . . -4 -2 . . . . -1 1 . 1 -1 2 -2
X.18 4 2 . . . 4 2 . . . . 1 -1 . 1 -1 -2 -2
|