Properties

Label 18T626
Order \(18432\)
n \(18\)
Cyclic No
Abelian No
Solvable Yes
Primitive No
$p$-group No

Related objects

Learn more about

Group action invariants

Degree $n$ :  $18$
Transitive number $t$ :  $626$
Parity:  $-1$
Primitive:  No
Nilpotency class:  $-1$ (not nilpotent)
Generators:  (1,16)(2,15)(3,7)(4,8)(9,14)(10,13)(11,12), (1,6,18,13,2,5,17,14)(7,16,11,10,8,15,12,9)
$|\Aut(F/K)|$:  $2$

Low degree resolvents

|G/N|Galois groups for stem field(s)
2:  $C_2$ x 3
4:  $C_2^2$
8:  $D_{4}$
72:  $C_3^2:D_4$
1152:  $S_4\wr C_2$ x 2

Resolvents shown for degrees $\leq 47$

Subfields

Degree 2: None

Degree 3: None

Degree 6: None

Degree 9: $S_3^2:C_2$

Low degree siblings

18T627 x 2, 18T630

Siblings are shown with degree $\leq 47$

A number field with this Galois group has no arithmetically equivalent fields.

Conjugacy Classes

There are 54 conjugacy classes of elements. Data not shown.

Group invariants

Order:  $18432=2^{11} \cdot 3^{2}$
Cyclic:  No
Abelian:  No
Solvable:  Yes
GAP id:  Data not available
Character table: Data not available.