Group action invariants
| Degree $n$ : | $18$ | |
| Transitive number $t$ : | $61$ | |
| Group : | $C_6\times S_4$ | |
| Parity: | $-1$ | |
| Primitive: | No | |
| Nilpotency class: | $-1$ (not nilpotent) | |
| Generators: | (1,7,6,11,4,9,2,8,5,12,3,10)(13,16,17,14,15,18), (1,15,9,2,16,10)(3,18,11,4,17,12)(5,13,7,6,14,8) | |
| $|\Aut(F/K)|$: | $6$ |
Low degree resolvents
|G/N| Galois groups for stem field(s) 2: $C_2$ x 3 3: $C_3$ 4: $C_2^2$ 6: $S_3$, $C_6$ x 3 12: $D_{6}$, $C_6\times C_2$ 18: $S_3\times C_3$ 24: $S_4$ 36: $C_6\times S_3$ 48: $S_4\times C_2$ 72: 12T45 Resolvents shown for degrees $\leq 47$
Subfields
Degree 2: None
Degree 6: $S_4\times C_2$
Degree 9: $S_3\times C_3$
Low degree siblings
18T61Siblings are shown with degree $\leq 47$
A number field with this Galois group has no arithmetically equivalent fields.
Conjugacy Classes
| Cycle Type | Size | Order | Representative |
| $ 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1 $ | $1$ | $1$ | $()$ |
| $ 2, 2, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1 $ | $3$ | $2$ | $(13,14)(15,16)(17,18)$ |
| $ 2, 2, 2, 2, 2, 2, 1, 1, 1, 1, 1, 1 $ | $3$ | $2$ | $( 7, 8)( 9,10)(11,12)(13,14)(15,16)(17,18)$ |
| $ 4, 4, 4, 1, 1, 1, 1, 1, 1 $ | $6$ | $4$ | $( 7,15, 8,16)( 9,17,10,18)(11,14,12,13)$ |
| $ 2, 2, 2, 2, 2, 2, 1, 1, 1, 1, 1, 1 $ | $6$ | $2$ | $( 7,15)( 8,16)( 9,17)(10,18)(11,14)(12,13)$ |
| $ 2, 2, 2, 2, 2, 2, 2, 2, 2 $ | $1$ | $2$ | $( 1, 2)( 3, 4)( 5, 6)( 7, 8)( 9,10)(11,12)(13,14)(15,16)(17,18)$ |
| $ 4, 4, 4, 2, 2, 2 $ | $6$ | $4$ | $( 1, 2)( 3, 4)( 5, 6)( 7,15, 8,16)( 9,17,10,18)(11,14,12,13)$ |
| $ 2, 2, 2, 2, 2, 2, 2, 2, 2 $ | $6$ | $2$ | $( 1, 2)( 3, 4)( 5, 6)( 7,15)( 8,16)( 9,17)(10,18)(11,14)(12,13)$ |
| $ 6, 3, 3, 3, 3 $ | $3$ | $6$ | $( 1, 3, 5, 2, 4, 6)( 7, 9,12)( 8,10,11)(13,15,17)(14,16,18)$ |
| $ 6, 6, 3, 3 $ | $3$ | $6$ | $( 1, 3, 5, 2, 4, 6)( 7, 9,12)( 8,10,11)(13,16,17,14,15,18)$ |
| $ 6, 6, 6 $ | $1$ | $6$ | $( 1, 3, 5, 2, 4, 6)( 7,10,12, 8, 9,11)(13,16,17,14,15,18)$ |
| $ 6, 6, 6 $ | $6$ | $6$ | $( 1, 3, 5, 2, 4, 6)( 7,17,12,15, 9,13)( 8,18,11,16,10,14)$ |
| $ 12, 6 $ | $6$ | $12$ | $( 1, 3, 5, 2, 4, 6)( 7,17,11,16, 9,13, 8,18,12,15,10,14)$ |
| $ 3, 3, 3, 3, 3, 3 $ | $1$ | $3$ | $( 1, 4, 5)( 2, 3, 6)( 7, 9,12)( 8,10,11)(13,15,17)(14,16,18)$ |
| $ 6, 6, 3, 3 $ | $6$ | $6$ | $( 1, 4, 5)( 2, 3, 6)( 7,17,12,15, 9,13)( 8,18,11,16,10,14)$ |
| $ 12, 3, 3 $ | $6$ | $12$ | $( 1, 4, 5)( 2, 3, 6)( 7,17,11,16, 9,13, 8,18,12,15,10,14)$ |
| $ 6, 3, 3, 3, 3 $ | $3$ | $6$ | $( 1, 5, 4)( 2, 6, 3)( 7,11, 9, 8,12,10)(13,17,15)(14,18,16)$ |
| $ 6, 6, 3, 3 $ | $3$ | $6$ | $( 1, 5, 4)( 2, 6, 3)( 7,11, 9, 8,12,10)(13,18,15,14,17,16)$ |
| $ 3, 3, 3, 3, 3, 3 $ | $1$ | $3$ | $( 1, 5, 4)( 2, 6, 3)( 7,12, 9)( 8,11,10)(13,17,15)(14,18,16)$ |
| $ 6, 6, 3, 3 $ | $6$ | $6$ | $( 1, 5, 4)( 2, 6, 3)( 7,13, 9,15,12,17)( 8,14,10,16,11,18)$ |
| $ 12, 3, 3 $ | $6$ | $12$ | $( 1, 5, 4)( 2, 6, 3)( 7,13,10,16,12,17, 8,14, 9,15,11,18)$ |
| $ 6, 6, 6 $ | $1$ | $6$ | $( 1, 6, 4, 2, 5, 3)( 7,11, 9, 8,12,10)(13,18,15,14,17,16)$ |
| $ 6, 6, 6 $ | $6$ | $6$ | $( 1, 6, 4, 2, 5, 3)( 7,13, 9,15,12,17)( 8,14,10,16,11,18)$ |
| $ 12, 6 $ | $6$ | $12$ | $( 1, 6, 4, 2, 5, 3)( 7,13,10,16,12,17, 8,14, 9,15,11,18)$ |
| $ 6, 6, 6 $ | $8$ | $6$ | $( 1, 7,17, 2, 8,18)( 3,10,14, 4, 9,13)( 5,12,15, 6,11,16)$ |
| $ 3, 3, 3, 3, 3, 3 $ | $8$ | $3$ | $( 1, 7,17)( 2, 8,18)( 3,10,14)( 4, 9,13)( 5,12,15)( 6,11,16)$ |
| $ 3, 3, 3, 3, 3, 3 $ | $8$ | $3$ | $( 1, 9,15)( 2,10,16)( 3,11,18)( 4,12,17)( 5, 7,13)( 6, 8,14)$ |
| $ 6, 6, 6 $ | $8$ | $6$ | $( 1, 9,15, 2,10,16)( 3,11,18, 4,12,17)( 5, 7,13, 6, 8,14)$ |
| $ 6, 6, 6 $ | $8$ | $6$ | $( 1,11,14, 2,12,13)( 3, 7,15, 4, 8,16)( 5,10,18, 6, 9,17)$ |
| $ 3, 3, 3, 3, 3, 3 $ | $8$ | $3$ | $( 1,11,14)( 2,12,13)( 3, 7,15)( 4, 8,16)( 5,10,18)( 6, 9,17)$ |
Group invariants
| Order: | $144=2^{4} \cdot 3^{2}$ | |
| Cyclic: | No | |
| Abelian: | No | |
| Solvable: | Yes | |
| GAP id: | [144, 188] |
| Character table: Data not available. |