Group action invariants
| Degree $n$ : | $18$ | |
| Transitive number $t$ : | $60$ | |
| Group : | $C_2\times S_3\times A_4$ | |
| Parity: | $-1$ | |
| Primitive: | No | |
| Nilpotency class: | $-1$ (not nilpotent) | |
| Generators: | (1,9,15)(2,10,16)(3,8,17,6,11,14)(4,7,18,5,12,13), (1,7,17,2,8,18)(3,10,13,4,9,14)(5,12,16,6,11,15) | |
| $|\Aut(F/K)|$: | $2$ |
Low degree resolvents
|G/N| Galois groups for stem field(s) 2: $C_2$ x 3 3: $C_3$ 4: $C_2^2$ 6: $S_3$, $C_6$ x 3 12: $A_4$, $D_{6}$, $C_6\times C_2$ 18: $S_3\times C_3$ 24: $A_4\times C_2$ x 3 36: $C_6\times S_3$ 48: $C_2^2 \times A_4$ 72: 12T43 Resolvents shown for degrees $\leq 47$
Subfields
Degree 2: None
Degree 6: $A_4\times C_2$
Degree 9: $S_3\times C_3$
Low degree siblings
18T60Siblings are shown with degree $\leq 47$
A number field with this Galois group has no arithmetically equivalent fields.
Conjugacy Classes
| Cycle Type | Size | Order | Representative |
| $ 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1 $ | $1$ | $1$ | $()$ |
| $ 2, 2, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1 $ | $3$ | $2$ | $(13,14)(15,16)(17,18)$ |
| $ 2, 2, 2, 2, 2, 2, 1, 1, 1, 1, 1, 1 $ | $3$ | $2$ | $( 7, 8)( 9,10)(11,12)(13,14)(15,16)(17,18)$ |
| $ 2, 2, 2, 2, 2, 2, 2, 2, 1, 1 $ | $9$ | $2$ | $( 3, 6)( 4, 5)( 7,11)( 8,12)( 9,10)(13,17)(14,18)(15,16)$ |
| $ 2, 2, 2, 2, 2, 2, 2, 1, 1, 1, 1 $ | $9$ | $2$ | $( 3, 6)( 4, 5)( 7,11)( 8,12)( 9,10)(13,18)(14,17)$ |
| $ 2, 2, 2, 2, 2, 2, 1, 1, 1, 1, 1, 1 $ | $3$ | $2$ | $( 3, 6)( 4, 5)( 7,12)( 8,11)(13,18)(14,17)$ |
| $ 2, 2, 2, 2, 2, 2, 2, 2, 2 $ | $1$ | $2$ | $( 1, 2)( 3, 4)( 5, 6)( 7, 8)( 9,10)(11,12)(13,14)(15,16)(17,18)$ |
| $ 2, 2, 2, 2, 2, 2, 2, 2, 2 $ | $3$ | $2$ | $( 1, 2)( 3, 5)( 4, 6)( 7,11)( 8,12)( 9,10)(13,17)(14,18)(15,16)$ |
| $ 6, 3, 3, 3, 3 $ | $6$ | $6$ | $( 1, 3, 5, 2, 4, 6)( 7, 9,12)( 8,10,11)(13,15,18)(14,16,17)$ |
| $ 6, 6, 3, 3 $ | $6$ | $6$ | $( 1, 3, 5, 2, 4, 6)( 7, 9,12)( 8,10,11)(13,16,18,14,15,17)$ |
| $ 6, 6, 6 $ | $2$ | $6$ | $( 1, 3, 5, 2, 4, 6)( 7,10,12, 8, 9,11)(13,16,18,14,15,17)$ |
| $ 3, 3, 3, 3, 3, 3 $ | $2$ | $3$ | $( 1, 4, 5)( 2, 3, 6)( 7, 9,12)( 8,10,11)(13,15,18)(14,16,17)$ |
| $ 3, 3, 3, 3, 3, 3 $ | $8$ | $3$ | $( 1, 7,17)( 2, 8,18)( 3,10,13)( 4, 9,14)( 5,12,16)( 6,11,15)$ |
| $ 6, 6, 6 $ | $8$ | $6$ | $( 1, 7,17, 2, 8,18)( 3,10,13, 4, 9,14)( 5,12,16, 6,11,15)$ |
| $ 6, 6, 3, 3 $ | $12$ | $6$ | $( 1, 7,15, 5, 9,13)( 2, 8,16, 6,10,14)( 3,11,17)( 4,12,18)$ |
| $ 6, 6, 6 $ | $12$ | $6$ | $( 1, 7,15, 6,10,14)( 2, 8,16, 5, 9,13)( 3,11,17, 4,12,18)$ |
| $ 3, 3, 3, 3, 3, 3 $ | $4$ | $3$ | $( 1, 9,15)( 2,10,16)( 3,11,17)( 4,12,18)( 5, 7,13)( 6, 8,14)$ |
| $ 6, 6, 6 $ | $4$ | $6$ | $( 1, 9,15, 2,10,16)( 3,11,17, 4,12,18)( 5, 7,13, 6, 8,14)$ |
| $ 3, 3, 3, 3, 3, 3 $ | $8$ | $3$ | $( 1,13,11)( 2,14,12)( 3,16, 7)( 4,15, 8)( 5,18,10)( 6,17, 9)$ |
| $ 6, 6, 6 $ | $8$ | $6$ | $( 1,13,12, 2,14,11)( 3,16, 8, 4,15, 7)( 5,18, 9, 6,17,10)$ |
| $ 6, 6, 3, 3 $ | $12$ | $6$ | $( 1,13, 9, 5,15, 7)( 2,14,10, 6,16, 8)( 3,17,11)( 4,18,12)$ |
| $ 6, 6, 6 $ | $12$ | $6$ | $( 1,13,10, 6,16, 7)( 2,14, 9, 5,15, 8)( 3,17,12, 4,18,11)$ |
| $ 3, 3, 3, 3, 3, 3 $ | $4$ | $3$ | $( 1,15, 9)( 2,16,10)( 3,17,11)( 4,18,12)( 5,13, 7)( 6,14, 8)$ |
| $ 6, 6, 6 $ | $4$ | $6$ | $( 1,15,10, 2,16, 9)( 3,17,12, 4,18,11)( 5,13, 8, 6,14, 7)$ |
Group invariants
| Order: | $144=2^{4} \cdot 3^{2}$ | |
| Cyclic: | No | |
| Abelian: | No | |
| Solvable: | Yes | |
| GAP id: | [144, 190] |
| Character table: Data not available. |