Properties

Label 18T586
Order \(13824\)
n \(18\)
Cyclic No
Abelian No
Solvable Yes
Primitive No
$p$-group No

Related objects

Learn more about

Group action invariants

Degree $n$ :  $18$
Transitive number $t$ :  $586$
Parity:  $-1$
Primitive:  No
Nilpotency class:  $-1$ (not nilpotent)
Generators:  (1,16,5,8,3,11,14,9,18)(2,15,6,7,4,12,13,10,17), (1,17,3,14,11,16,8,5,10,2,18,4,13,12,15,7,6,9)
$|\Aut(F/K)|$:  $2$

Low degree resolvents

|G/N|Galois groups for stem field(s)
2:  $C_2$
3:  $C_3$ x 4
6:  $C_6$ x 4
9:  $C_3^2$
12:  $A_4$
18:  $C_6 \times C_3$
24:  $A_4\times C_2$
27:  $C_9:C_3$
36:  $C_3\times A_4$
54:  18T14
72:  18T25
108:  18T47
216:  18T92
1728:  12T228
3456:  18T429
6912:  18T515

Resolvents shown for degrees $\leq 47$

Subfields

Degree 2: None

Degree 3: $C_3$

Degree 6: None

Degree 9: $C_9:C_3$

Low degree siblings

18T586 x 2

Siblings are shown with degree $\leq 47$

A number field with this Galois group has no arithmetically equivalent fields.

Conjugacy Classes

There are 80 conjugacy classes of elements. Data not shown.

Group invariants

Order:  $13824=2^{9} \cdot 3^{3}$
Cyclic:  No
Abelian:  No
Solvable:  Yes
GAP id:  Data not available
Character table: Data not available.