Properties

Label 18T585
Order \(13824\)
n \(18\)
Cyclic No
Abelian No
Solvable Yes
Primitive No
$p$-group No

Related objects

Learn more about

Group action invariants

Degree $n$ :  $18$
Transitive number $t$ :  $585$
Parity:  $-1$
Primitive:  No
Nilpotency class:  $-1$ (not nilpotent)
Generators:  (1,7,11)(2,8,12)(3,10,13,4,9,14)(5,16,17)(6,15,18), (1,13,10)(2,14,9)(3,16,5,4,15,6)(7,17,11)(8,18,12)
$|\Aut(F/K)|$:  $2$

Low degree resolvents

|G/N|Galois groups for stem field(s)
2:  $C_2$
3:  $C_3$ x 4
6:  $C_6$ x 4
9:  $C_3^2$
12:  $A_4$
18:  $C_6 \times C_3$
24:  $A_4\times C_2$
27:  $C_3^2:C_3$
36:  $C_3\times A_4$
54:  18T15
72:  18T25
108:  18T48
216:  18T91
1728:  12T229
3456:  18T428
6912:  18T516

Resolvents shown for degrees $\leq 47$

Subfields

Degree 2: None

Degree 3: $C_3$

Degree 6: None

Degree 9: $C_3^2:C_3$

Low degree siblings

18T585 x 2

Siblings are shown with degree $\leq 47$

A number field with this Galois group has no arithmetically equivalent fields.

Conjugacy Classes

There are 96 conjugacy classes of elements. Data not shown.

Group invariants

Order:  $13824=2^{9} \cdot 3^{3}$
Cyclic:  No
Abelian:  No
Solvable:  Yes
GAP id:  Data not available
Character table: Data not available.