Group action invariants
| Degree $n$ : | $18$ | |
| Transitive number $t$ : | $57$ | |
| Group : | $C_3.S_3^2$ | |
| Parity: | $-1$ | |
| Primitive: | No | |
| Nilpotency class: | $-1$ (not nilpotent) | |
| Generators: | (1,11)(2,12)(3,13)(4,14)(15,17)(16,18), (1,7,14,2,8,13)(3,5,16,17,10,11)(4,6,15,18,9,12) | |
| $|\Aut(F/K)|$: | $6$ |
Low degree resolvents
|G/N| Galois groups for stem field(s) 2: $C_2$ x 3 4: $C_2^2$ 6: $S_3$ x 2 12: $D_{6}$ x 2 36: $S_3^2$ Resolvents shown for degrees $\leq 47$
Subfields
Degree 2: $C_2$
Degree 3: $S_3$
Degree 6: $D_{6}$
Degree 9: $C_3^2 : D_{6} $
Low degree siblings
9T18 x 2, 18T51 x 2, 18T55 x 2, 18T56, 18T57Siblings are shown with degree $\leq 47$
A number field with this Galois group has no arithmetically equivalent fields.
Conjugacy Classes
| Cycle Type | Size | Order | Representative |
| $ 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1 $ | $1$ | $1$ | $()$ |
| $ 3, 3, 3, 3, 1, 1, 1, 1, 1, 1 $ | $6$ | $3$ | $( 5, 8, 9)( 6, 7,10)(11,15,14)(12,16,13)$ |
| $ 2, 2, 2, 2, 2, 2, 1, 1, 1, 1, 1, 1 $ | $9$ | $2$ | $( 5,11)( 6,12)( 7,13)( 8,14)( 9,15)(10,16)$ |
| $ 2, 2, 2, 2, 2, 2, 2, 2, 2 $ | $9$ | $2$ | $( 1, 2)( 3,17)( 4,18)( 5, 6)( 7, 9)( 8,10)(11,13)(12,14)(15,16)$ |
| $ 6, 6, 2, 2, 2 $ | $18$ | $6$ | $( 1, 2)( 3,17)( 4,18)( 5,12, 8,16, 9,13)( 6,11, 7,15,10,14)$ |
| $ 2, 2, 2, 2, 2, 2, 2, 2, 2 $ | $9$ | $2$ | $( 1, 2)( 3,17)( 4,18)( 5,16)( 6,15)( 7,14)( 8,13)( 9,12)(10,11)$ |
| $ 3, 3, 3, 3, 3, 3 $ | $2$ | $3$ | $( 1, 4,17)( 2, 3,18)( 5, 8, 9)( 6, 7,10)(11,14,15)(12,13,16)$ |
| $ 6, 6, 3, 3 $ | $18$ | $6$ | $( 1, 4,17)( 2, 3,18)( 5,11, 9,15, 8,14)( 6,12,10,16, 7,13)$ |
| $ 3, 3, 3, 3, 3, 3 $ | $12$ | $3$ | $( 1, 5,11)( 2, 6,12)( 3, 7,13)( 4, 8,14)( 9,15,17)(10,16,18)$ |
| $ 3, 3, 3, 3, 3, 3 $ | $6$ | $3$ | $( 1, 5,15)( 2, 6,16)( 3, 7,12)( 4, 8,11)( 9,14,17)(10,13,18)$ |
| $ 6, 6, 6 $ | $18$ | $6$ | $( 1, 6,11, 3, 9,13)( 2, 5,12, 4,10,14)( 7,15,18, 8,16,17)$ |
Group invariants
| Order: | $108=2^{2} \cdot 3^{3}$ | |
| Cyclic: | No | |
| Abelian: | No | |
| Solvable: | Yes | |
| GAP id: | [108, 17] |
| Character table: |
2 2 1 2 2 1 2 1 1 . 1 1
3 3 2 1 1 1 1 3 1 2 2 1
1a 3a 2a 2b 6a 2c 3b 6b 3c 3d 6c
2P 1a 3a 1a 1a 3a 1a 3b 3b 3c 3d 3d
3P 1a 1a 2a 2b 2c 2c 1a 2a 1a 1a 2b
5P 1a 3a 2a 2b 6a 2c 3b 6b 3c 3d 6c
X.1 1 1 1 1 1 1 1 1 1 1 1
X.2 1 1 -1 -1 1 1 1 -1 1 1 -1
X.3 1 1 -1 1 -1 -1 1 -1 1 1 1
X.4 1 1 1 -1 -1 -1 1 1 1 1 -1
X.5 2 2 . -2 . . 2 . -1 -1 1
X.6 2 2 . 2 . . 2 . -1 -1 -1
X.7 2 -1 . . -1 2 2 . -1 2 .
X.8 2 -1 . . 1 -2 2 . -1 2 .
X.9 4 -2 . . . . 4 . 1 -2 .
X.10 6 . -2 . . . -3 1 . . .
X.11 6 . 2 . . . -3 -1 . . .
|