Properties

Label 18T555
Order \(10368\)
n \(18\)
Cyclic No
Abelian No
Solvable Yes
Primitive No
$p$-group No

Related objects

Learn more about

Group action invariants

Degree $n$ :  $18$
Transitive number $t$ :  $555$
Parity:  $-1$
Primitive:  No
Nilpotency class:  $-1$ (not nilpotent)
Generators:  (1,15,6,10)(2,16,8,18)(3,12,4,13)(5,14)(7,11,9,17), (1,12,6,11,8,18,4,17,3,15,2,14)(5,16,7,10,9,13), (1,16,4,13,2,11,5,17,9,12,3,18)(6,15,8,14,7,10)
$|\Aut(F/K)|$:  $1$

Low degree resolvents

|G/N|Galois groups for stem field(s)
2:  $C_2$ x 7
4:  $C_2^2$ x 7
8:  $D_{4}$ x 6, $C_2^3$
16:  $D_4\times C_2$ x 3
32:  $C_2^2 \wr C_2$
64:  $(((C_4 \times C_2): C_2):C_2):C_2$
128:  $C_2 \wr C_2\wr C_2$

Resolvents shown for degrees $\leq 47$

Subfields

Degree 2: $C_2$

Degree 3: None

Degree 6: None

Degree 9: None

Low degree siblings

12T274 x 2

Siblings are shown with degree $\leq 47$

A number field with this Galois group has no arithmetically equivalent fields.

Conjugacy Classes

There are 54 conjugacy classes of elements. Data not shown.

Group invariants

Order:  $10368=2^{7} \cdot 3^{4}$
Cyclic:  No
Abelian:  No
Solvable:  Yes
GAP id:  Data not available
Character table: Data not available.