Properties

Label 18T552
Order \(10368\)
n \(18\)
Cyclic No
Abelian No
Solvable Yes
Primitive No
$p$-group No

Related objects

Learn more about

Group action invariants

Degree $n$ :  $18$
Transitive number $t$ :  $552$
Parity:  $-1$
Primitive:  No
Nilpotency class:  $-1$ (not nilpotent)
Generators:  (1,11,18,2,12,17)(3,8,14,4,7,13)(5,10,16,6,9,15), (1,12,16,6,9,13,4,8,17,2,11,15,5,10,14,3,7,18)
$|\Aut(F/K)|$:  $2$

Low degree resolvents

|G/N|Galois groups for stem field(s)
2:  $C_2$
3:  $C_3$ x 4
6:  $C_6$ x 4
9:  $C_3^2$
18:  $C_6 \times C_3$
27:  $C_3^2:C_3$
54:  18T15
81:  $C_3 \wr C_3 $
162:  18T75
5184:  12T265

Resolvents shown for degrees $\leq 47$

Subfields

Degree 2: None

Degree 3: $C_3$

Degree 6: None

Degree 9: $C_3 \wr C_3 $

Low degree siblings

There are no siblings with degree $\leq 47$
A number field with this Galois group has no arithmetically equivalent fields.

Conjugacy Classes

There are 64 conjugacy classes of elements. Data not shown.

Group invariants

Order:  $10368=2^{7} \cdot 3^{4}$
Cyclic:  No
Abelian:  No
Solvable:  Yes
GAP id:  Data not available
Character table: Data not available.