Group action invariants
| Degree $n$ : | $18$ | |
| Transitive number $t$ : | $53$ | |
| Group : | $C_3^3:C_2^2$ | |
| Parity: | $-1$ | |
| Primitive: | No | |
| Nilpotency class: | $-1$ (not nilpotent) | |
| Generators: | (1,2,3)(4,11,6,10,5,12)(7,13,9,15,8,14)(16,17,18), (1,18,7,11,15,5)(2,17,8,10,13,4)(3,16,9,12,14,6) | |
| $|\Aut(F/K)|$: | $3$ |
Low degree resolvents
|G/N| Galois groups for stem field(s) 2: $C_2$ x 3 4: $C_2^2$ 6: $S_3$ x 3 12: $D_{6}$ x 3 36: $S_3^2$ x 3 Resolvents shown for degrees $\leq 47$
Subfields
Degree 2: $C_2$
Degree 3: $S_3$
Degree 9: None
Low degree siblings
12T71, 18T53 x 2Siblings are shown with degree $\leq 47$
A number field with this Galois group has no arithmetically equivalent fields.
Conjugacy Classes
| Cycle Type | Size | Order | Representative |
| $ 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1 $ | $1$ | $1$ | $()$ |
| $ 2, 2, 2, 2, 2, 2, 1, 1, 1, 1, 1, 1 $ | $9$ | $2$ | $( 7,15)( 8,13)( 9,14)(10,17)(11,18)(12,16)$ |
| $ 3, 3, 3, 1, 1, 1, 1, 1, 1, 1, 1, 1 $ | $4$ | $3$ | $( 4,10,17)( 5,11,18)( 6,12,16)$ |
| $ 3, 3, 3, 3, 3, 3 $ | $2$ | $3$ | $( 1, 2, 3)( 4, 5, 6)( 7, 8, 9)(10,11,12)(13,14,15)(16,17,18)$ |
| $ 6, 6, 3, 3 $ | $18$ | $6$ | $( 1, 2, 3)( 4, 5, 6)( 7,13, 9,15, 8,14)(10,18,12,17,11,16)$ |
| $ 3, 3, 3, 3, 3, 3 $ | $4$ | $3$ | $( 1, 2, 3)( 4,11,16)( 5,12,17)( 6,10,18)( 7, 8, 9)(13,14,15)$ |
| $ 3, 3, 3, 3, 3, 3 $ | $4$ | $3$ | $( 1, 3, 2)( 4,12,18)( 5,10,16)( 6,11,17)( 7, 9, 8)(13,15,14)$ |
| $ 2, 2, 2, 2, 2, 2, 2, 2, 2 $ | $9$ | $2$ | $( 1, 4)( 2, 6)( 3, 5)( 7,10)( 8,12)( 9,11)(13,16)(14,18)(15,17)$ |
| $ 2, 2, 2, 2, 2, 2, 2, 2, 2 $ | $9$ | $2$ | $( 1, 4)( 2, 6)( 3, 5)( 7,17)( 8,16)( 9,18)(10,15)(11,14)(12,13)$ |
| $ 6, 6, 6 $ | $18$ | $6$ | $( 1, 4, 7,10,15,17)( 2, 6, 8,12,13,16)( 3, 5, 9,11,14,18)$ |
| $ 6, 6, 6 $ | $18$ | $6$ | $( 1, 4, 7,17,15,10)( 2, 6, 8,16,13,12)( 3, 5, 9,18,14,11)$ |
| $ 3, 3, 3, 3, 3, 3 $ | $2$ | $3$ | $( 1, 7,15)( 2, 8,13)( 3, 9,14)( 4,10,17)( 5,11,18)( 6,12,16)$ |
| $ 3, 3, 3, 3, 3, 3 $ | $2$ | $3$ | $( 1, 7,15)( 2, 8,13)( 3, 9,14)( 4,17,10)( 5,18,11)( 6,16,12)$ |
| $ 3, 3, 3, 3, 3, 3 $ | $4$ | $3$ | $( 1, 8,14)( 2, 9,15)( 3, 7,13)( 4,11,16)( 5,12,17)( 6,10,18)$ |
| $ 3, 3, 3, 3, 3, 3 $ | $4$ | $3$ | $( 1, 8,14)( 2, 9,15)( 3, 7,13)( 4,18,12)( 5,16,10)( 6,17,11)$ |
Group invariants
| Order: | $108=2^{2} \cdot 3^{3}$ | |
| Cyclic: | No | |
| Abelian: | No | |
| Solvable: | Yes | |
| GAP id: | [108, 40] |
| Character table: |
2 2 2 . 1 1 . . 2 2 1 1 1 1 . .
3 3 1 3 3 1 3 3 1 1 1 1 3 3 3 3
1a 2a 3a 3b 6a 3c 3d 2b 2c 6b 6c 3e 3f 3g 3h
2P 1a 1a 3a 3b 3b 3d 3c 1a 1a 3e 3f 3e 3f 3g 3h
3P 1a 2a 1a 1a 2a 1a 1a 2b 2c 2b 2c 1a 1a 1a 1a
5P 1a 2a 3a 3b 6a 3d 3c 2b 2c 6b 6c 3e 3f 3g 3h
X.1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
X.2 1 -1 1 1 -1 1 1 -1 1 -1 1 1 1 1 1
X.3 1 -1 1 1 -1 1 1 1 -1 1 -1 1 1 1 1
X.4 1 1 1 1 1 1 1 -1 -1 -1 -1 1 1 1 1
X.5 2 . -1 2 . -1 -1 . -2 . 1 2 -1 2 -1
X.6 2 . -1 2 . -1 -1 . 2 . -1 2 -1 2 -1
X.7 2 -2 2 -1 1 -1 -1 . . . . 2 2 -1 -1
X.8 2 . -1 2 . -1 -1 -2 . 1 . -1 2 -1 2
X.9 2 . -1 2 . -1 -1 2 . -1 . -1 2 -1 2
X.10 2 2 2 -1 -1 -1 -1 . . . . 2 2 -1 -1
X.11 4 . 1 4 . 1 1 . . . . -2 -2 -2 -2
X.12 4 . -2 -2 . 1 1 . . . . 4 -2 -2 1
X.13 4 . -2 -2 . 1 1 . . . . -2 4 1 -2
X.14 4 . 1 -2 . A /A . . . . -2 -2 1 1
X.15 4 . 1 -2 . /A A . . . . -2 -2 1 1
A = -E(3)+2*E(3)^2
= (-1-3*Sqrt(-3))/2 = -2-3b3
|