Group action invariants
| Degree $n$ : | $18$ | |
| Transitive number $t$ : | $520$ | |
| Parity: | $1$ | |
| Primitive: | No | |
| Nilpotency class: | $-1$ (not nilpotent) | |
| Generators: | (1,13,6,17,4,15)(2,14,5,18,3,16)(7,10,12)(8,9,11), (1,10,3,8,6,11)(2,9,4,7,5,12)(13,16)(14,15) | |
| $|\Aut(F/K)|$: | $2$ |
Low degree resolvents
|G/N| Galois groups for stem field(s) 2: $C_2$ x 3 4: $C_2^2$ 6: $S_3$ x 2 12: $D_{6}$ x 2 36: $S_3^2$ 108: $C_3^2 : D_{6} $ Resolvents shown for degrees $\leq 47$
Subfields
Degree 2: None
Degree 3: $S_3$
Degree 6: None
Degree 9: $C_3^2 : D_{6} $
Low degree siblings
12T268 x 2, 18T517 x 2, 18T518 x 2, 18T519 x 2, 18T520Siblings are shown with degree $\leq 47$
A number field with this Galois group has no arithmetically equivalent fields.
Conjugacy Classes
| Cycle Type | Size | Order | Representative |
| $ 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1 $ | $1$ | $1$ | $()$ |
| $ 2, 2, 2, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1 $ | $27$ | $2$ | $( 7, 8)( 9,10)(13,14)(15,16)$ |
| $ 2, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1 $ | $9$ | $2$ | $( 9,10)(11,12)$ |
| $ 2, 2, 2, 2, 2, 2, 1, 1, 1, 1, 1, 1 $ | $9$ | $2$ | $( 3, 4)( 5, 6)( 9,10)(11,12)(13,14)(15,16)$ |
| $ 2, 2, 2, 2, 2, 2, 1, 1, 1, 1, 1, 1 $ | $18$ | $2$ | $( 1, 2)( 5, 6)( 7, 8)( 9,10)(13,14)(17,18)$ |
| $ 3, 3, 3, 3, 3, 3 $ | $128$ | $3$ | $( 1, 6, 4)( 2, 5, 3)( 7,12,10)( 8,11, 9)(13,17,15)(14,18,16)$ |
| $ 3, 3, 3, 3, 3, 3 $ | $192$ | $3$ | $( 1,18, 9)( 2,17,10)( 3,13,11)( 4,14,12)( 5,16, 8)( 6,15, 7)$ |
| $ 6, 6, 3, 3 $ | $576$ | $6$ | $( 1,18,10, 2,17, 9)( 3,14,12, 4,13,11)( 5,15, 8)( 6,16, 7)$ |
| $ 3, 3, 3, 3, 2, 2, 1, 1 $ | $288$ | $6$ | $( 1, 5, 3)( 2, 6, 4)( 9,10)(11,12)(13,15,17)(14,16,18)$ |
| $ 3, 3, 3, 3, 1, 1, 1, 1, 1, 1 $ | $96$ | $3$ | $( 1, 5, 3)( 2, 6, 4)(13,15,17)(14,16,18)$ |
| $ 6, 6, 3, 3 $ | $288$ | $6$ | $( 1,16, 9, 2,15,10)( 3,18,12)( 4,17,11)( 5,13, 7, 6,14, 8)$ |
| $ 3, 3, 3, 3, 3, 3 $ | $96$ | $3$ | $( 1,16, 9)( 2,15,10)( 3,17,11)( 4,18,12)( 5,14, 8)( 6,13, 7)$ |
| $ 2, 2, 2, 2, 2, 2, 1, 1, 1, 1, 1, 1 $ | $36$ | $2$ | $( 1,17)( 2,18)( 3,14)( 4,13)( 5,16)( 6,15)$ |
| $ 4, 4, 2, 2, 2, 2, 1, 1 $ | $216$ | $4$ | $( 1,17)( 2,18)( 3,13, 4,14)( 5,15, 6,16)( 7, 8)( 9,10)$ |
| $ 2, 2, 2, 2, 2, 2, 2, 2, 1, 1 $ | $108$ | $2$ | $( 1,17)( 2,18)( 3,14)( 4,13)( 5,16)( 6,15)( 9,10)(11,12)$ |
| $ 4, 4, 2, 2, 1, 1, 1, 1, 1, 1 $ | $108$ | $4$ | $( 1,18, 2,17)( 3,13, 4,14)( 5,16)( 6,15)$ |
| $ 4, 4, 2, 2, 2, 2, 1, 1 $ | $108$ | $4$ | $( 1,18, 2,17)( 3,14)( 4,13)( 5,15, 6,16)( 7, 8)(11,12)$ |
| $ 6, 6, 3, 3 $ | $1152$ | $6$ | $( 1,15, 4,17, 6,13)( 2,16, 3,18, 5,14)( 7,12,10)( 8,11, 9)$ |
| $ 4, 2, 2, 2, 2, 2, 1, 1, 1, 1 $ | $216$ | $4$ | $( 1, 6)( 2, 5)( 9,11)(10,12)(13,18,14,17)(15,16)$ |
| $ 4, 4, 4, 2, 2, 2 $ | $72$ | $4$ | $( 1, 5, 2, 6)( 3, 4)( 7, 8)( 9,11,10,12)(13,18,14,17)(15,16)$ |
| $ 2, 2, 2, 2, 2, 2, 1, 1, 1, 1, 1, 1 $ | $72$ | $2$ | $( 1, 5)( 2, 6)( 9,11)(10,12)(13,17)(14,18)$ |
| $ 4, 4, 2, 2, 2, 2, 1, 1 $ | $216$ | $4$ | $( 1, 5)( 2, 6)( 7, 8)( 9,11,10,12)(13,17,14,18)(15,16)$ |
| $ 6, 6, 3, 3 $ | $576$ | $6$ | $( 1,15, 8, 5,17,11)( 2,16, 7, 6,18,12)( 3,13, 9)( 4,14,10)$ |
| $ 12, 6 $ | $576$ | $12$ | $( 1,15, 8, 5,17,12, 2,16, 7, 6,18,11)( 3,13,10, 4,14, 9)$ |
| $ 6, 6, 2, 2, 1, 1 $ | $576$ | $6$ | $( 1,15, 5,18, 3,14)( 2,16, 6,17, 4,13)( 9,11)(10,12)$ |
| $ 6, 6, 4, 2 $ | $576$ | $12$ | $( 1,16, 6,17, 4,14)( 2,15, 5,18, 3,13)( 7, 8)( 9,11,10,12)$ |
| $ 4, 4, 4, 2, 2, 2 $ | $216$ | $4$ | $( 1, 6, 2, 5)( 3, 4)( 7,15, 8,16)( 9,13,10,14)(11,18)(12,17)$ |
| $ 2, 2, 2, 2, 2, 2, 2, 2, 1, 1 $ | $72$ | $2$ | $( 1, 5)( 2, 6)( 7,16)( 8,15)( 9,14)(10,13)(11,18)(12,17)$ |
| $ 4, 4, 2, 2, 2, 2, 1, 1 $ | $216$ | $4$ | $( 1, 5)( 2, 6)( 7,16)( 8,15)( 9,14,10,13)(11,18,12,17)$ |
| $ 4, 2, 2, 2, 2, 2, 2, 2 $ | $72$ | $4$ | $( 1, 5, 2, 6)( 3, 4)( 7,16)( 8,15)( 9,13)(10,14)(11,17)(12,18)$ |
Group invariants
| Order: | $6912=2^{8} \cdot 3^{3}$ | |
| Cyclic: | No | |
| Abelian: | No | |
| Solvable: | Yes | |
| GAP id: | Data not available |
| Character table: Data not available. |