Group action invariants
| Degree $n$ : | $18$ | |
| Transitive number $t$ : | $473$ | |
| Parity: | $1$ | |
| Primitive: | No | |
| Nilpotency class: | $-1$ (not nilpotent) | |
| Generators: | (1,11,13,3,7,16,5,10,18)(2,12,14,4,8,15,6,9,17), (1,15,7)(2,16,8)(3,17,9,4,18,10)(5,13,12,6,14,11) | |
| $|\Aut(F/K)|$: | $2$ |
Low degree resolvents
|G/N| Galois groups for stem field(s) 3: $C_3$ x 4 9: $C_3^2$ 27: $C_3^2:C_3$ 81: $C_3 \wr C_3 $ Resolvents shown for degrees $\leq 47$
Subfields
Degree 2: None
Degree 3: $C_3$
Degree 6: None
Degree 9: $C_3 \wr C_3 $
Low degree siblings
12T265Siblings are shown with degree $\leq 47$
A number field with this Galois group has no arithmetically equivalent fields.
Conjugacy Classes
| Cycle Type | Size | Order | Representative |
| $ 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1 $ | $1$ | $1$ | $()$ |
| $ 2, 2, 2, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1 $ | $27$ | $2$ | $( 7, 8)( 9,10)(13,14)(17,18)$ |
| $ 2, 2, 2, 2, 2, 2, 1, 1, 1, 1, 1, 1 $ | $27$ | $2$ | $( 1, 2)( 3, 4)( 7, 8)( 9,10)(13,14)(15,16)$ |
| $ 2, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1 $ | $9$ | $2$ | $(13,14)(15,16)$ |
| $ 3, 3, 3, 3, 3, 3 $ | $64$ | $3$ | $( 1, 3, 5)( 2, 4, 6)( 7,10,11)( 8, 9,12)(13,16,18)(14,15,17)$ |
| $ 3, 3, 3, 3, 3, 3 $ | $64$ | $3$ | $( 1, 5, 3)( 2, 6, 4)( 7,11,10)( 8,12, 9)(13,18,16)(14,17,15)$ |
| $ 9, 9 $ | $576$ | $9$ | $( 1,11,13, 3, 7,16, 5,10,18)( 2,12,14, 4, 8,15, 6, 9,17)$ |
| $ 9, 9 $ | $576$ | $9$ | $( 1,13, 7, 5,18,11, 3,16,10)( 2,14, 8, 6,17,12, 4,15, 9)$ |
| $ 3, 3, 3, 3, 1, 1, 1, 1, 1, 1 $ | $48$ | $3$ | $( 1, 6, 3)( 2, 5, 4)(13,16,18)(14,15,17)$ |
| $ 3, 3, 3, 3, 2, 2, 1, 1 $ | $144$ | $6$ | $( 1, 6, 3)( 2, 5, 4)( 7, 8)( 9,10)(13,16,17)(14,15,18)$ |
| $ 3, 3, 3, 3, 1, 1, 1, 1, 1, 1 $ | $48$ | $3$ | $( 1, 3, 6)( 2, 4, 5)(13,18,16)(14,17,15)$ |
| $ 3, 3, 3, 3, 2, 2, 1, 1 $ | $144$ | $6$ | $( 1, 3, 6)( 2, 4, 5)( 7, 8)( 9,10)(13,17,15)(14,18,16)$ |
| $ 3, 3, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1 $ | $12$ | $3$ | $(13,17,16)(14,18,15)$ |
| $ 3, 3, 2, 2, 1, 1, 1, 1, 1, 1, 1, 1 $ | $36$ | $6$ | $( 7, 8)( 9,10)(13,18,15)(14,17,16)$ |
| $ 3, 3, 2, 2, 1, 1, 1, 1, 1, 1, 1, 1 $ | $36$ | $6$ | $( 1, 2)( 3, 4)(13,18,16)(14,17,15)$ |
| $ 3, 3, 2, 2, 2, 2, 1, 1, 1, 1 $ | $108$ | $6$ | $( 1, 2)( 3, 4)( 7, 8)( 9,10)(13,17,15)(14,18,16)$ |
| $ 3, 3, 3, 3, 2, 2, 1, 1 $ | $144$ | $6$ | $( 1, 3, 5)( 2, 4, 6)( 7,10,11)( 8, 9,12)(13,14)(17,18)$ |
| $ 3, 3, 3, 3, 1, 1, 1, 1, 1, 1 $ | $48$ | $3$ | $( 1, 3, 5)( 2, 4, 6)( 7, 9,12)( 8,10,11)$ |
| $ 3, 3, 3, 3, 3, 3 $ | $192$ | $3$ | $( 1, 5, 3)( 2, 6, 4)( 7,11,10)( 8,12, 9)(13,15,17)(14,16,18)$ |
| $ 6, 6, 3, 3 $ | $432$ | $6$ | $( 1,11,13, 2,12,14)( 3, 7,16)( 4, 8,15)( 5,10,18, 6, 9,17)$ |
| $ 3, 3, 3, 3, 3, 3 $ | $144$ | $3$ | $( 1,11,13)( 2,12,14)( 3, 7,15)( 4, 8,16)( 5,10,17)( 6, 9,18)$ |
| $ 9, 9 $ | $576$ | $9$ | $( 1,13,12, 4,15, 8, 6,17,10)( 2,14,11, 3,16, 7, 5,18, 9)$ |
| $ 3, 3, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1 $ | $12$ | $3$ | $(13,16,17)(14,15,18)$ |
| $ 3, 3, 2, 2, 1, 1, 1, 1, 1, 1, 1, 1 $ | $36$ | $6$ | $( 7, 8)( 9,10)(13,16,18)(14,15,17)$ |
| $ 3, 3, 2, 2, 1, 1, 1, 1, 1, 1, 1, 1 $ | $36$ | $6$ | $( 1, 2)( 3, 4)(13,15,17)(14,16,18)$ |
| $ 3, 3, 2, 2, 2, 2, 1, 1, 1, 1 $ | $108$ | $6$ | $( 1, 2)( 3, 4)( 7, 8)( 9,10)(13,15,18)(14,16,17)$ |
| $ 3, 3, 3, 3, 3, 3 $ | $192$ | $3$ | $( 1, 3, 5)( 2, 4, 6)( 7,10,11)( 8, 9,12)(13,18,15)(14,17,16)$ |
| $ 3, 3, 3, 3, 2, 2, 1, 1 $ | $144$ | $6$ | $( 1, 5, 3)( 2, 6, 4)( 7,11,10)( 8,12, 9)(15,16)(17,18)$ |
| $ 3, 3, 3, 3, 1, 1, 1, 1, 1, 1 $ | $48$ | $3$ | $( 1, 5, 4)( 2, 6, 3)( 7,11,10)( 8,12, 9)$ |
| $ 9, 9 $ | $576$ | $9$ | $( 1,11,13, 5,10,18, 4, 8,15)( 2,12,14, 6, 9,17, 3, 7,16)$ |
| $ 6, 6, 3, 3 $ | $432$ | $6$ | $( 1,13,10)( 2,14, 9)( 3,16,12, 4,15,11)( 5,18, 8, 6,17, 7)$ |
| $ 3, 3, 3, 3, 3, 3 $ | $144$ | $3$ | $( 1,14, 9)( 2,13,10)( 3,16,12)( 4,15,11)( 5,17, 7)( 6,18, 8)$ |
Group invariants
| Order: | $5184=2^{6} \cdot 3^{4}$ | |
| Cyclic: | No | |
| Abelian: | No | |
| Solvable: | Yes | |
| GAP id: | Data not available |
| Character table: Data not available. |