Group action invariants
| Degree $n$ : | $18$ | |
| Transitive number $t$ : | $463$ | |
| Parity: | $1$ | |
| Primitive: | No | |
| Nilpotency class: | $-1$ (not nilpotent) | |
| Generators: | (1,10,14,4,7,16,2,9,13,3,8,15)(5,12,17,6,11,18), (1,6,14,18,8,11,2,5,13,17,7,12)(3,10,15,4,9,16) | |
| $|\Aut(F/K)|$: | $2$ |
Low degree resolvents
|G/N| Galois groups for stem field(s) 2: $C_2$ 3: $C_3$ 6: $S_3$, $C_6$ 12: $A_4$ 18: $S_3\times C_3$ 24: $S_4$, $A_4\times C_2$ 72: 12T43, 12T45 288: $A_4\wr C_2$, 16T709 1152: 12T205, 12T206 Resolvents shown for degrees $\leq 47$
Subfields
Degree 2: None
Degree 6: None
Degree 9: $S_3\times C_3$
Low degree siblings
18T462 x 3, 18T463 x 2Siblings are shown with degree $\leq 47$
A number field with this Galois group has no arithmetically equivalent fields.
Conjugacy Classes
| Cycle Type | Size | Order | Representative |
| $ 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1 $ | $1$ | $1$ | $()$ |
| $ 2, 2, 2, 2, 2, 2, 1, 1, 1, 1, 1, 1 $ | $9$ | $2$ | $( 1, 2)( 9,10)(11,12)(13,14)(15,16)(17,18)$ |
| $ 2, 2, 2, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1 $ | $18$ | $2$ | $( 3, 4)( 5, 6)(11,12)(15,16)$ |
| $ 2, 2, 2, 2, 2, 2, 1, 1, 1, 1, 1, 1 $ | $6$ | $2$ | $( 3, 4)( 7, 8)( 9,10)(11,12)(13,14)(17,18)$ |
| $ 2, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1 $ | $9$ | $2$ | $( 9,10)(15,16)$ |
| $ 2, 2, 2, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1 $ | $9$ | $2$ | $( 1, 2)(11,12)(13,14)(17,18)$ |
| $ 2, 2, 2, 2, 2, 2, 1, 1, 1, 1, 1, 1 $ | $9$ | $2$ | $( 1, 2)( 3, 4)( 5, 6)(13,14)(15,16)(17,18)$ |
| $ 2, 2, 2, 2, 2, 2, 1, 1, 1, 1, 1, 1 $ | $3$ | $2$ | $( 1, 2)( 3, 4)( 5, 6)( 7, 8)( 9,10)(17,18)$ |
| $ 3, 3, 3, 3, 3, 3 $ | $64$ | $3$ | $( 1, 7,13)( 2, 8,14)( 3,10,16)( 4, 9,15)( 5,11,17)( 6,12,18)$ |
| $ 3, 3, 3, 3, 3, 3 $ | $64$ | $3$ | $( 1,13, 7)( 2,14, 8)( 3,16,10)( 4,15, 9)( 5,17,11)( 6,18,12)$ |
| $ 2, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1 $ | $9$ | $2$ | $(13,14)(15,16)$ |
| $ 2, 2, 2, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1 $ | $18$ | $2$ | $( 1, 2)( 9,10)(11,12)(17,18)$ |
| $ 2, 2, 2, 2, 2, 2, 1, 1, 1, 1, 1, 1 $ | $18$ | $2$ | $( 1, 2)( 3, 4)( 5, 6)( 9,10)(15,16)(17,18)$ |
| $ 2, 2, 2, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1 $ | $9$ | $2$ | $( 5, 6)( 7, 8)( 9,10)(17,18)$ |
| $ 2, 2, 2, 2, 2, 2, 1, 1, 1, 1, 1, 1 $ | $18$ | $2$ | $( 1, 2)( 5, 6)( 7, 8)(11,12)(13,14)(15,16)$ |
| $ 2, 2, 2, 2, 2, 2, 1, 1, 1, 1, 1, 1 $ | $18$ | $2$ | $( 3, 4)( 7, 8)( 9,10)(11,12)(15,16)(17,18)$ |
| $ 2, 2, 2, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1 $ | $18$ | $2$ | $( 1, 2)( 3, 4)( 7, 8)(13,14)$ |
| $ 2, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1 $ | $18$ | $2$ | $( 9,10)(13,14)$ |
| $ 2, 2, 2, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1 $ | $18$ | $2$ | $( 1, 2)(11,12)(15,16)(17,18)$ |
| $ 2, 2, 2, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1 $ | $9$ | $2$ | $( 1, 2)( 3, 4)( 5, 6)(17,18)$ |
| $ 2, 2, 2, 2, 2, 2, 1, 1, 1, 1, 1, 1 $ | $3$ | $2$ | $( 1, 2)( 3, 4)( 7, 8)( 9,10)(13,14)(15,16)$ |
| $ 2, 2, 2, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1 $ | $18$ | $2$ | $( 3, 4)( 5, 6)( 7, 8)(11,12)$ |
| $ 2, 2, 2, 2, 2, 2, 2, 2, 1, 1 $ | $9$ | $2$ | $( 1, 2)( 3, 4)( 5, 6)( 7, 8)( 9,10)(13,14)(15,16)(17,18)$ |
| $ 2, 2, 2, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1 $ | $9$ | $2$ | $( 5, 6)(13,14)(15,16)(17,18)$ |
| $ 6, 6, 3, 3 $ | $192$ | $6$ | $( 1, 7,13, 2, 8,14)( 3,10,16, 4, 9,15)( 5,11,17)( 6,12,18)$ |
| $ 6, 6, 3, 3 $ | $192$ | $6$ | $( 1,13, 8, 2,14, 7)( 3,16, 9, 4,15,10)( 5,17,11)( 6,18,12)$ |
| $ 3, 3, 3, 3, 3, 3 $ | $128$ | $3$ | $( 1, 4,17)( 2, 3,18)( 5, 8, 9)( 6, 7,10)(11,13,15)(12,14,16)$ |
| $ 6, 6, 3, 3 $ | $384$ | $6$ | $( 1, 4,18)( 2, 3,17)( 5, 8,10, 6, 7, 9)(11,14,15,12,13,16)$ |
| $ 6, 6, 3, 3 $ | $384$ | $6$ | $( 1, 9,11)( 2,10,12)( 3, 6,13, 4, 5,14)( 7,16,18, 8,15,17)$ |
| $ 3, 3, 3, 3, 3, 3 $ | $128$ | $3$ | $( 1,10,12)( 2, 9,11)( 3, 5,13)( 4, 6,14)( 7,16,17)( 8,15,18)$ |
| $ 6, 6, 3, 3 $ | $384$ | $6$ | $( 1,15, 5, 2,16, 6)( 3,12, 8, 4,11, 7)( 9,17,13)(10,18,14)$ |
| $ 3, 3, 3, 3, 3, 3 $ | $128$ | $3$ | $( 1,15, 5)( 2,16, 6)( 3,11, 7)( 4,12, 8)( 9,18,13)(10,17,14)$ |
| $ 4, 4, 2, 2, 2, 2, 1, 1 $ | $72$ | $4$ | $( 3,17)( 4,18)( 5,10, 6, 9)( 7, 8)(11,16,12,15)(13,14)$ |
| $ 4, 4, 2, 2, 2, 2, 1, 1 $ | $72$ | $4$ | $( 1, 2)( 3,18, 4,17)( 5, 9)( 6,10)( 7, 8)(11,15,12,16)$ |
| $ 4, 4, 2, 2, 2, 2, 1, 1 $ | $72$ | $4$ | $( 3,17, 4,18)( 5,10)( 6, 9)( 7, 8)(11,15,12,16)(13,14)$ |
| $ 4, 4, 2, 2, 1, 1, 1, 1, 1, 1 $ | $72$ | $4$ | $( 3,18, 4,17)( 5, 9, 6,10)(11,15)(12,16)$ |
| $ 2, 2, 2, 2, 2, 2, 2, 2, 1, 1 $ | $72$ | $2$ | $( 1, 2)( 3,17)( 4,18)( 5,10)( 6, 9)(11,16)(12,15)(13,14)$ |
| $ 2, 2, 2, 2, 2, 2, 1, 1, 1, 1, 1, 1 $ | $24$ | $2$ | $( 3,18)( 4,17)( 5, 9)( 6,10)(11,16)(12,15)$ |
| $ 6, 6, 3, 3 $ | $384$ | $6$ | $( 1, 7,14)( 2, 8,13)( 3, 5,16,18, 9,11)( 4, 6,15,17,10,12)$ |
| $ 6, 6, 3, 3 $ | $384$ | $6$ | $( 1,13, 8)( 2,14, 7)( 3,11,10,18,15, 5)( 4,12, 9,17,16, 6)$ |
| $ 4, 2, 2, 2, 2, 2, 1, 1, 1, 1 $ | $72$ | $4$ | $( 3,17)( 4,18)( 5,10, 6, 9)( 7, 8)(11,15)(12,16)$ |
| $ 4, 2, 2, 2, 2, 2, 2, 2 $ | $72$ | $4$ | $( 1, 2)( 3,18, 4,17)( 5, 9)( 6,10)( 7, 8)(11,16)(12,15)(13,14)$ |
| $ 4, 2, 2, 2, 2, 2, 1, 1, 1, 1 $ | $72$ | $4$ | $( 3,17, 4,18)( 5,10)( 6, 9)( 7, 8)(11,16)(12,15)$ |
| $ 4, 4, 4, 2, 1, 1, 1, 1 $ | $72$ | $4$ | $( 3,18, 4,17)( 5, 9, 6,10)(11,16,12,15)(13,14)$ |
| $ 4, 2, 2, 2, 2, 2, 1, 1, 1, 1 $ | $72$ | $4$ | $( 3,17)( 4,18)( 5, 9)( 6,10)( 7, 8)(11,16,12,15)$ |
| $ 4, 4, 4, 2, 2, 2 $ | $24$ | $4$ | $( 1, 2)( 3,18, 4,17)( 5,10, 6, 9)( 7, 8)(11,15,12,16)(13,14)$ |
| $ 12, 6 $ | $384$ | $12$ | $( 1, 7,14, 2, 8,13)( 3, 5,16,18, 9,11, 4, 6,15,17,10,12)$ |
| $ 12, 6 $ | $384$ | $12$ | $( 1,13, 7, 2,14, 8)( 3,11, 9,17,16, 6, 4,12,10,18,15, 5)$ |
Group invariants
| Order: | $4608=2^{9} \cdot 3^{2}$ | |
| Cyclic: | No | |
| Abelian: | No | |
| Solvable: | Yes | |
| GAP id: | Data not available |
| Character table: Data not available. |