Properties

Label 18T461
Order \(4608\)
n \(18\)
Cyclic No
Abelian No
Solvable Yes
Primitive No
$p$-group No

Related objects

Learn more about

Group action invariants

Degree $n$ :  $18$
Transitive number $t$ :  $461$
Parity:  $-1$
Primitive:  No
Nilpotency class:  $-1$ (not nilpotent)
Generators:  (1,13,4,16,5,17)(2,14,3,15,6,18)(7,11,10,8,12,9), (1,12)(2,11)(3,9)(4,10)(5,7)(6,8)(15,17)(16,18), (1,14,11)(2,13,12)(3,15,7,4,16,8)(5,18,10)(6,17,9)
$|\Aut(F/K)|$:  $2$

Low degree resolvents

|G/N|Galois groups for stem field(s)
2:  $C_2$ x 7
4:  $C_2^2$ x 7
6:  $S_3$ x 2
8:  $C_2^3$
12:  $D_{6}$ x 6
24:  $S_4$, $S_3 \times C_2^2$ x 2
36:  $S_3^2$
48:  $S_4\times C_2$ x 3
72:  12T37
96:  12T48
144:  12T83
288:  18T111
576:  $(A_4\wr C_2):C_2$
1152:  12T195
2304:  12T239

Resolvents shown for degrees $\leq 47$

Subfields

Degree 2: None

Degree 3: $S_3$ x 2

Degree 6: None

Degree 9: $S_3^2$

Low degree siblings

18T461 x 3

Siblings are shown with degree $\leq 47$

A number field with this Galois group has no arithmetically equivalent fields.

Conjugacy Classes

There are 60 conjugacy classes of elements. Data not shown.

Group invariants

Order:  $4608=2^{9} \cdot 3^{2}$
Cyclic:  No
Abelian:  No
Solvable:  Yes
GAP id:  Data not available
Character table: Data not available.