Properties

Label 18T459
Order \(4608\)
n \(18\)
Cyclic No
Abelian No
Solvable Yes
Primitive No
$p$-group No

Related objects

Learn more about

Group action invariants

Degree $n$ :  $18$
Transitive number $t$ :  $459$
Parity:  $-1$
Primitive:  No
Nilpotency class:  $-1$ (not nilpotent)
Generators:  (7,8)(11,12)(13,14)(15,16)(17,18), (1,3,17)(2,4,18)(5,8,9,6,7,10)(11,13,15,12,14,16), (1,14,8)(2,13,7)(3,15,10)(4,16,9)(5,17,11,6,18,12)
$|\Aut(F/K)|$:  $2$

Low degree resolvents

|G/N|Galois groups for stem field(s)
2:  $C_2$
3:  $C_3$ x 4
6:  $C_6$ x 4
9:  $C_3^2$
12:  $A_4$ x 4
18:  $C_6 \times C_3$
24:  $A_4\times C_2$ x 4
36:  $C_3\times A_4$ x 4
72:  18T25 x 4
144:  12T85 x 6
288:  18T109 x 6
576:  12T164 x 4
1152:  18T263 x 4
2304:  18T369

Resolvents shown for degrees $\leq 47$

Subfields

Degree 2: None

Degree 3: $C_3$ x 4

Degree 6: None

Degree 9: $C_3^2$

Low degree siblings

18T459 x 8

Siblings are shown with degree $\leq 47$

A number field with this Galois group has no arithmetically equivalent fields.

Conjugacy Classes

There are 96 conjugacy classes of elements. Data not shown.

Group invariants

Order:  $4608=2^{9} \cdot 3^{2}$
Cyclic:  No
Abelian:  No
Solvable:  Yes
GAP id:  Data not available
Character table: Data not available.