Properties

Label 18T437
Order \(3456\)
n \(18\)
Cyclic No
Abelian No
Solvable Yes
Primitive No
$p$-group No

Related objects

Learn more about

Group action invariants

Degree $n$ :  $18$
Transitive number $t$ :  $437$
Parity:  $1$
Primitive:  No
Nilpotency class:  $-1$ (not nilpotent)
Generators:  (1,7,16)(2,8,15)(3,9,18,4,10,17)(5,12,13,6,11,14), (1,16,2,15)(3,17,4,18)(5,14)(6,13)(7,8)(11,12), (7,12,10)(8,11,9)(13,15,17)(14,16,18)
$|\Aut(F/K)|$:  $2$

Low degree resolvents

|G/N|Galois groups for stem field(s)
2:  $C_2$
6:  $S_3$ x 4
18:  $C_3^2:C_2$
54:  $(C_3^2:C_3):C_2$

Resolvents shown for degrees $\leq 47$

Subfields

Degree 2: None

Degree 3: $S_3$

Degree 6: None

Degree 9: $(C_3^2:C_3):C_2$

Low degree siblings

12T252 x 4, 18T436 x 4, 18T437 x 3

Siblings are shown with degree $\leq 47$

A number field with this Galois group has no arithmetically equivalent fields.

Conjugacy Classes

Cycle TypeSizeOrderRepresentative
$ 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1 $ $1$ $1$ $()$
$ 2, 2, 2, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1 $ $27$ $2$ $( 1, 2)( 3, 4)( 7, 8)( 9,10)$
$ 2, 2, 2, 2, 2, 2, 1, 1, 1, 1, 1, 1 $ $9$ $2$ $( 1, 2)( 3, 4)( 7, 8)(11,12)(13,14)(15,16)$
$ 2, 2, 2, 2, 2, 2, 1, 1, 1, 1, 1, 1 $ $9$ $2$ $( 1, 2)( 3, 4)( 9,10)(11,12)(13,14)(17,18)$
$ 2, 2, 2, 2, 2, 2, 1, 1, 1, 1, 1, 1 $ $9$ $2$ $( 3, 4)( 5, 6)( 7, 8)(11,12)(15,16)(17,18)$
$ 2, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1 $ $9$ $2$ $(13,14)(17,18)$
$ 3, 3, 3, 3, 3, 3 $ $96$ $3$ $( 1,16, 7)( 2,15, 8)( 3,18,10)( 4,17, 9)( 5,13,11)( 6,14,12)$
$ 6, 6, 3, 3 $ $288$ $6$ $( 1,15, 8, 2,16, 7)( 3,18, 9, 4,17,10)( 5,14,11)( 6,13,12)$
$ 3, 3, 3, 3, 3, 3 $ $64$ $3$ $( 1, 6, 3)( 2, 5, 4)( 7,11,10)( 8,12, 9)(13,18,15)(14,17,16)$
$ 3, 3, 3, 3, 3, 3 $ $64$ $3$ $( 1, 4, 6)( 2, 3, 5)( 7,10,12)( 8, 9,11)(13,16,18)(14,15,17)$
$ 3, 3, 3, 3, 1, 1, 1, 1, 1, 1 $ $96$ $3$ $( 7,10,12)( 8, 9,11)(13,17,15)(14,18,16)$
$ 3, 3, 3, 3, 2, 2, 1, 1 $ $288$ $6$ $( 1, 2)( 3, 4)( 7, 9,11)( 8,10,12)(13,17,15)(14,18,16)$
$ 3, 3, 3, 3, 3, 3 $ $96$ $3$ $( 1,16,12)( 2,15,11)( 3,18, 7)( 4,17, 8)( 5,13, 9)( 6,14,10)$
$ 6, 6, 3, 3 $ $288$ $6$ $( 1,16,12, 2,15,11)( 3,18, 8)( 4,17, 7)( 5,13,10, 6,14, 9)$
$ 3, 3, 3, 3, 3, 3 $ $96$ $3$ $( 1, 7,18)( 2, 8,17)( 3,10,14)( 4, 9,13)( 5,11,15)( 6,12,16)$
$ 6, 6, 3, 3 $ $288$ $6$ $( 1, 8,18)( 2, 7,17)( 3, 9,13, 4,10,14)( 5,11,16, 6,12,15)$
$ 2, 2, 2, 2, 2, 2, 2, 2, 1, 1 $ $108$ $2$ $( 3, 4)( 5, 6)( 7,15)( 8,16)( 9,17)(10,18)(11,14)(12,13)$
$ 4, 4, 2, 2, 2, 2, 1, 1 $ $108$ $4$ $( 1, 2)( 5, 6)( 7,15, 8,16)( 9,17,10,18)(11,14)(12,13)$
$ 4, 4, 2, 2, 2, 2, 1, 1 $ $108$ $4$ $( 3, 4)( 5, 6)( 7,16, 8,15)( 9,17,10,18)(11,13)(12,14)$
$ 4, 4, 2, 2, 1, 1, 1, 1, 1, 1 $ $108$ $4$ $( 7,16, 8,15)( 9,17)(10,18)(11,13,12,14)$
$ 4, 4, 2, 2, 2, 2, 1, 1 $ $108$ $4$ $( 3, 4)( 5, 6)( 7,15)( 8,16)( 9,18,10,17)(11,13,12,14)$
$ 2, 2, 2, 2, 2, 2, 1, 1, 1, 1, 1, 1 $ $36$ $2$ $( 7,15)( 8,16)( 9,18)(10,17)(11,13)(12,14)$
$ 6, 6, 3, 3 $ $576$ $6$ $( 1,12, 3, 8, 6, 9)( 2,11, 4, 7, 5,10)(13,17,15)(14,18,16)$
$ 6, 6, 3, 3 $ $576$ $6$ $( 1,17, 5,16, 4,13)( 2,18, 6,15, 3,14)( 7, 9,12)( 8,10,11)$

Group invariants

Order:  $3456=2^{7} \cdot 3^{3}$
Cyclic:  No
Abelian:  No
Solvable:  Yes
GAP id:  Data not available
Character table: Data not available.