Group action invariants
| Degree $n$ : | $18$ | |
| Transitive number $t$ : | $43$ | |
| Group : | $C_3\times S_3^2$ | |
| Parity: | $-1$ | |
| Primitive: | No | |
| Nilpotency class: | $-1$ (not nilpotent) | |
| Generators: | (1,12,13,4,8,18)(2,10,14,5,9,16)(3,11,15,6,7,17), (1,8,2,9,3,7)(4,16,5,17,6,18)(10,12,11)(13,15,14) | |
| $|\Aut(F/K)|$: | $3$ |
Low degree resolvents
|G/N| Galois groups for stem field(s) 2: $C_2$ x 3 3: $C_3$ 4: $C_2^2$ 6: $S_3$ x 2, $C_6$ x 3 12: $D_{6}$ x 2, $C_6\times C_2$ 18: $S_3\times C_3$ x 2 36: $S_3^2$, $C_6\times S_3$ x 2 Resolvents shown for degrees $\leq 47$
Subfields
Degree 2: $C_2$
Degree 3: $C_3$
Degree 9: None
Low degree siblings
12T70, 18T46 x 2Siblings are shown with degree $\leq 47$
A number field with this Galois group has no arithmetically equivalent fields.
Conjugacy Classes
| Cycle Type | Size | Order | Representative |
| $ 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1 $ | $1$ | $1$ | $()$ |
| $ 2, 2, 2, 2, 2, 2, 1, 1, 1, 1, 1, 1 $ | $9$ | $2$ | $( 7,13)( 8,14)( 9,15)(10,17)(11,18)(12,16)$ |
| $ 3, 3, 3, 1, 1, 1, 1, 1, 1, 1, 1, 1 $ | $4$ | $3$ | $( 4,10,17)( 5,11,18)( 6,12,16)$ |
| $ 3, 3, 3, 3, 3, 3 $ | $1$ | $3$ | $( 1, 2, 3)( 4, 5, 6)( 7, 8, 9)(10,11,12)(13,14,15)(16,17,18)$ |
| $ 6, 6, 3, 3 $ | $9$ | $6$ | $( 1, 2, 3)( 4, 5, 6)( 7,14, 9,13, 8,15)(10,18,12,17,11,16)$ |
| $ 3, 3, 3, 3, 3, 3 $ | $4$ | $3$ | $( 1, 2, 3)( 4,11,16)( 5,12,17)( 6,10,18)( 7, 8, 9)(13,14,15)$ |
| $ 3, 3, 3, 3, 3, 3 $ | $1$ | $3$ | $( 1, 3, 2)( 4, 6, 5)( 7, 9, 8)(10,12,11)(13,15,14)(16,18,17)$ |
| $ 6, 6, 3, 3 $ | $9$ | $6$ | $( 1, 3, 2)( 4, 6, 5)( 7,15, 8,13, 9,14)(10,16,11,17,12,18)$ |
| $ 3, 3, 3, 3, 3, 3 $ | $4$ | $3$ | $( 1, 3, 2)( 4,12,18)( 5,10,16)( 6,11,17)( 7, 9, 8)(13,15,14)$ |
| $ 2, 2, 2, 2, 2, 2, 2, 2, 2 $ | $3$ | $2$ | $( 1, 4)( 2, 5)( 3, 6)( 7,11)( 8,12)( 9,10)(13,18)(14,16)(15,17)$ |
| $ 2, 2, 2, 2, 2, 2, 2, 2, 2 $ | $3$ | $2$ | $( 1, 4)( 2, 5)( 3, 6)( 7,18)( 8,16)( 9,17)(10,15)(11,13)(12,14)$ |
| $ 6, 6, 6 $ | $6$ | $6$ | $( 1, 4, 9,10,15,17)( 2, 5, 7,11,13,18)( 3, 6, 8,12,14,16)$ |
| $ 6, 6, 6 $ | $6$ | $6$ | $( 1, 4, 9,17,15,10)( 2, 5, 7,18,13,11)( 3, 6, 8,16,14,12)$ |
| $ 6, 6, 6 $ | $3$ | $6$ | $( 1, 5, 3, 4, 2, 6)( 7,12, 9,11, 8,10)(13,16,15,18,14,17)$ |
| $ 6, 6, 6 $ | $3$ | $6$ | $( 1, 5, 3, 4, 2, 6)( 7,16, 9,18, 8,17)(10,13,12,15,11,14)$ |
| $ 6, 6, 6 $ | $6$ | $6$ | $( 1, 5, 8,10,13,16)( 2, 6, 9,11,14,17)( 3, 4, 7,12,15,18)$ |
| $ 6, 6, 6 $ | $6$ | $6$ | $( 1, 5, 8,17,13,12)( 2, 6, 9,18,14,10)( 3, 4, 7,16,15,11)$ |
| $ 6, 6, 6 $ | $3$ | $6$ | $( 1, 6, 2, 4, 3, 5)( 7,10, 8,11, 9,12)(13,17,14,18,15,16)$ |
| $ 6, 6, 6 $ | $3$ | $6$ | $( 1, 6, 2, 4, 3, 5)( 7,17, 8,18, 9,16)(10,14,11,15,12,13)$ |
| $ 6, 6, 6 $ | $6$ | $6$ | $( 1, 6, 7,10,14,18)( 2, 4, 8,11,15,16)( 3, 5, 9,12,13,17)$ |
| $ 6, 6, 6 $ | $6$ | $6$ | $( 1, 6, 7,17,14,11)( 2, 4, 8,18,15,12)( 3, 5, 9,16,13,10)$ |
| $ 3, 3, 3, 3, 3, 3 $ | $2$ | $3$ | $( 1, 7,14)( 2, 8,15)( 3, 9,13)( 4,11,16)( 5,12,17)( 6,10,18)$ |
| $ 3, 3, 3, 3, 3, 3 $ | $2$ | $3$ | $( 1, 7,14)( 2, 8,15)( 3, 9,13)( 4,18,12)( 5,16,10)( 6,17,11)$ |
| $ 3, 3, 3, 3, 3, 3 $ | $2$ | $3$ | $( 1, 8,13)( 2, 9,14)( 3, 7,15)( 4,12,18)( 5,10,16)( 6,11,17)$ |
| $ 3, 3, 3, 3, 3, 3 $ | $2$ | $3$ | $( 1, 8,13)( 2, 9,14)( 3, 7,15)( 4,16,11)( 5,17,12)( 6,18,10)$ |
| $ 3, 3, 3, 3, 3, 3 $ | $2$ | $3$ | $( 1, 9,15)( 2, 7,13)( 3, 8,14)( 4,10,17)( 5,11,18)( 6,12,16)$ |
| $ 3, 3, 3, 3, 3, 3 $ | $2$ | $3$ | $( 1, 9,15)( 2, 7,13)( 3, 8,14)( 4,17,10)( 5,18,11)( 6,16,12)$ |
Group invariants
| Order: | $108=2^{2} \cdot 3^{3}$ | |
| Cyclic: | No | |
| Abelian: | No | |
| Solvable: | Yes | |
| GAP id: | [108, 38] |
| Character table: Data not available. |