Properties

Label 18T400
Order \(2592\)
n \(18\)
Cyclic No
Abelian No
Solvable Yes
Primitive No
$p$-group No

Related objects

Learn more about

Group action invariants

Degree $n$ :  $18$
Transitive number $t$ :  $400$
Parity:  $-1$
Primitive:  No
Nilpotency class:  $-1$ (not nilpotent)
Generators:  (1,8,13,6,11,17,4,10,16,2,7,14,5,12,18,3,9,15), (1,8,17)(2,7,18)(3,9,16)(4,10,15)(5,12,14)(6,11,13), (1,10,14,2,9,13)(3,11,18,4,12,17)(5,8,15,6,7,16)
$|\Aut(F/K)|$:  $2$

Low degree resolvents

|G/N|Galois groups for stem field(s)
2:  $C_2$
3:  $C_3$
6:  $C_6$
12:  $A_4$ x 5
24:  $A_4\times C_2$ x 5
48:  $C_2^4:C_3$
96:  12T56
324:  $((C_3 \times (C_3^2 : C_2)) : C_2) : C_3$
648:  18T199
1296:  18T322

Resolvents shown for degrees $\leq 47$

Subfields

Degree 2: None

Degree 3: $C_3$

Degree 6: $A_4\times C_2$

Degree 9: $((C_3 \times (C_3^2 : C_2)) : C_2) : C_3$

Low degree siblings

18T400 x 11

Siblings are shown with degree $\leq 47$

A number field with this Galois group has no arithmetically equivalent fields.

Conjugacy Classes

There are 56 conjugacy classes of elements. Data not shown.

Group invariants

Order:  $2592=2^{5} \cdot 3^{4}$
Cyclic:  No
Abelian:  No
Solvable:  Yes
GAP id:  Data not available
Character table: Data not available.