Group action invariants
| Degree $n$ : | $18$ | |
| Transitive number $t$ : | $40$ | |
| Group : | $C_3:S_4$ | |
| Parity: | $-1$ | |
| Primitive: | No | |
| Nilpotency class: | $-1$ (not nilpotent) | |
| Generators: | (1,18,2,17)(3,15,4,16)(5,14,6,13)(9,12)(10,11), (1,2)(3,6)(4,5)(7,17)(8,18)(9,15)(10,16)(11,13)(12,14), (1,5,3)(2,6,4)(7,11,10)(8,12,9)(13,17,16)(14,18,15) | |
| $|\Aut(F/K)|$: | $2$ |
Low degree resolvents
|G/N| Galois groups for stem field(s) 2: $C_2$ 6: $S_3$ x 4 18: $C_3^2:C_2$ 24: $S_4$ Resolvents shown for degrees $\leq 47$
Subfields
Degree 2: None
Degree 3: $S_3$ x 4
Degree 6: $S_4$
Degree 9: $C_3^2:C_2$
Low degree siblings
12T44 x 3, 18T37Siblings are shown with degree $\leq 47$
A number field with this Galois group has no arithmetically equivalent fields.
Conjugacy Classes
| Cycle Type | Size | Order | Representative |
| $ 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1 $ | $1$ | $1$ | $()$ |
| $ 2, 2, 2, 2, 2, 2, 1, 1, 1, 1, 1, 1 $ | $3$ | $2$ | $( 7, 8)( 9,10)(11,12)(13,14)(15,16)(17,18)$ |
| $ 4, 4, 4, 2, 2, 1, 1 $ | $18$ | $4$ | $( 3, 5)( 4, 6)( 7,17, 8,18)( 9,15,10,16)(11,13,12,14)$ |
| $ 2, 2, 2, 2, 2, 2, 2, 2, 2 $ | $18$ | $2$ | $( 1, 2)( 3, 6)( 4, 5)( 7,17)( 8,18)( 9,15)(10,16)(11,13)(12,14)$ |
| $ 6, 6, 3, 3 $ | $6$ | $6$ | $( 1, 3, 5)( 2, 4, 6)( 7, 9,11, 8,10,12)(13,15,17,14,16,18)$ |
| $ 3, 3, 3, 3, 3, 3 $ | $2$ | $3$ | $( 1, 3, 5)( 2, 4, 6)( 7,10,11)( 8, 9,12)(13,16,17)(14,15,18)$ |
| $ 3, 3, 3, 3, 3, 3 $ | $8$ | $3$ | $( 1, 7,17)( 2, 8,18)( 3,10,13)( 4, 9,14)( 5,11,16)( 6,12,15)$ |
| $ 3, 3, 3, 3, 3, 3 $ | $8$ | $3$ | $( 1, 9,15)( 2,10,16)( 3,12,18)( 4,11,17)( 5, 8,14)( 6, 7,13)$ |
| $ 3, 3, 3, 3, 3, 3 $ | $8$ | $3$ | $( 1,11,14)( 2,12,13)( 3, 7,15)( 4, 8,16)( 5,10,18)( 6, 9,17)$ |
Group invariants
| Order: | $72=2^{3} \cdot 3^{2}$ | |
| Cyclic: | No | |
| Abelian: | No | |
| Solvable: | Yes | |
| GAP id: | [72, 43] |
| Character table: |
2 3 3 2 2 2 2 . . .
3 2 1 . . 1 2 2 2 2
1a 2a 4a 2b 6a 3a 3b 3c 3d
2P 1a 1a 2a 1a 3a 3a 3b 3c 3d
3P 1a 2a 4a 2b 2a 1a 1a 1a 1a
5P 1a 2a 4a 2b 6a 3a 3b 3c 3d
X.1 1 1 1 1 1 1 1 1 1
X.2 1 1 -1 -1 1 1 1 1 1
X.3 2 2 . . 2 2 -1 -1 -1
X.4 2 2 . . -1 -1 2 -1 -1
X.5 2 2 . . -1 -1 -1 -1 2
X.6 2 2 . . -1 -1 -1 2 -1
X.7 3 -1 -1 1 -1 3 . . .
X.8 3 -1 1 -1 -1 3 . . .
X.9 6 -2 . . 1 -3 . . .
|