Properties

Label 18T396
Order \(2592\)
n \(18\)
Cyclic No
Abelian No
Solvable Yes
Primitive No
$p$-group No

Related objects

Learn more about

Group action invariants

Degree $n$ :  $18$
Transitive number $t$ :  $396$
Parity:  $-1$
Primitive:  No
Nilpotency class:  $-1$ (not nilpotent)
Generators:  (1,6)(2,5)(7,11)(8,12)(13,15)(14,16), (1,2)(3,4)(5,6), (1,11)(2,12)(3,9)(4,10)(5,8)(6,7)(13,16)(14,15)(17,18), (13,15,18)(14,16,17), (1,16,12,6,14,9,4,17,8)(2,15,11,5,13,10,3,18,7)
$|\Aut(F/K)|$:  $2$

Low degree resolvents

|G/N|Galois groups for stem field(s)
2:  $C_2$ x 7
4:  $C_2^2$ x 7
6:  $S_3$ x 2
8:  $C_2^3$
12:  $D_{6}$ x 6
24:  $S_4$, $S_3 \times C_2^2$ x 2
36:  $S_3^2$
48:  $S_4\times C_2$ x 3
72:  12T37
96:  12T48
108:  $C_3^2 : D_{6} $
144:  12T83
216:  18T94
288:  18T111
324:  $((C_3^3:C_3):C_2):C_2$
432:  18T152
648:  18T194
864:  18T228
1296:  18T299

Resolvents shown for degrees $\leq 47$

Subfields

Degree 2: None

Degree 3: $S_3$

Degree 6: $S_4\times C_2$

Degree 9: $((C_3^3:C_3):C_2):C_2$

Low degree siblings

18T396 x 11

Siblings are shown with degree $\leq 47$

A number field with this Galois group has no arithmetically equivalent fields.

Conjugacy Classes

There are 70 conjugacy classes of elements. Data not shown.

Group invariants

Order:  $2592=2^{5} \cdot 3^{4}$
Cyclic:  No
Abelian:  No
Solvable:  Yes
GAP id:  Data not available
Character table: Data not available.