Group action invariants
| Degree $n$ : | $18$ | |
| Transitive number $t$ : | $37$ | |
| Group : | $C_3:S_4$ | |
| Parity: | $1$ | |
| Primitive: | No | |
| Nilpotency class: | $-1$ (not nilpotent) | |
| Generators: | (1,6,3,2,5,4)(7,12,10,8,11,9)(13,18,16)(14,17,15), (1,6)(2,5)(3,4)(7,16,8,15)(9,14,10,13)(11,18,12,17), (1,16)(2,15)(3,13)(4,14)(5,18)(6,17)(7,11)(8,12) | |
| $|\Aut(F/K)|$: | $2$ |
Low degree resolvents
|G/N| Galois groups for stem field(s) 2: $C_2$ 6: $S_3$ x 4 18: $C_3^2:C_2$ 24: $S_4$ Resolvents shown for degrees $\leq 47$
Subfields
Degree 2: None
Degree 3: $S_3$ x 4
Degree 6: $S_4$
Degree 9: $C_3^2:C_2$
Low degree siblings
12T44 x 3, 18T40Siblings are shown with degree $\leq 47$
A number field with this Galois group has no arithmetically equivalent fields.
Conjugacy Classes
| Cycle Type | Size | Order | Representative |
| $ 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1 $ | $1$ | $1$ | $()$ |
| $ 2, 2, 2, 2, 2, 2, 1, 1, 1, 1, 1, 1 $ | $3$ | $2$ | $( 7, 8)( 9,10)(11,12)(13,14)(15,16)(17,18)$ |
| $ 2, 2, 2, 2, 2, 2, 2, 2, 1, 1 $ | $18$ | $2$ | $( 3, 5)( 4, 6)( 7,17)( 8,18)( 9,16)(10,15)(11,14)(12,13)$ |
| $ 4, 4, 4, 2, 2, 2 $ | $18$ | $4$ | $( 1, 2)( 3, 6)( 4, 5)( 7,17, 8,18)( 9,16,10,15)(11,14,12,13)$ |
| $ 6, 6, 3, 3 $ | $6$ | $6$ | $( 1, 3, 5)( 2, 4, 6)( 7, 9,11, 8,10,12)(13,15,18,14,16,17)$ |
| $ 3, 3, 3, 3, 3, 3 $ | $2$ | $3$ | $( 1, 3, 5)( 2, 4, 6)( 7,10,11)( 8, 9,12)(13,16,18)(14,15,17)$ |
| $ 3, 3, 3, 3, 3, 3 $ | $8$ | $3$ | $( 1, 7,17)( 2, 8,18)( 3,10,14)( 4, 9,13)( 5,11,15)( 6,12,16)$ |
| $ 3, 3, 3, 3, 3, 3 $ | $8$ | $3$ | $( 1, 9,15)( 2,10,16)( 3,12,17)( 4,11,18)( 5, 8,14)( 6, 7,13)$ |
| $ 3, 3, 3, 3, 3, 3 $ | $8$ | $3$ | $( 1,11,14)( 2,12,13)( 3, 7,15)( 4, 8,16)( 5,10,17)( 6, 9,18)$ |
Group invariants
| Order: | $72=2^{3} \cdot 3^{2}$ | |
| Cyclic: | No | |
| Abelian: | No | |
| Solvable: | Yes | |
| GAP id: | [72, 43] |
| Character table: |
2 3 3 2 2 2 2 . . .
3 2 1 . . 1 2 2 2 2
1a 2a 2b 4a 6a 3a 3b 3c 3d
2P 1a 1a 1a 2a 3a 3a 3b 3c 3d
3P 1a 2a 2b 4a 2a 1a 1a 1a 1a
5P 1a 2a 2b 4a 6a 3a 3b 3c 3d
X.1 1 1 1 1 1 1 1 1 1
X.2 1 1 -1 -1 1 1 1 1 1
X.3 2 2 . . 2 2 -1 -1 -1
X.4 2 2 . . -1 -1 2 -1 -1
X.5 2 2 . . -1 -1 -1 -1 2
X.6 2 2 . . -1 -1 -1 2 -1
X.7 3 -1 -1 1 -1 3 . . .
X.8 3 -1 1 -1 -1 3 . . .
X.9 6 -2 . . 1 -3 . . .
|