Show commands: Magma
                    
            
Group invariants
| Abstract group: | $C_3:S_4$ | 
     | |
| Order: | $72=2^{3} \cdot 3^{2}$ | 
     | |
| Cyclic: | no | 
     | |
| Abelian: | no | 
     | |
| Solvable: | yes | 
     | |
| Nilpotency class: | not nilpotent | 
     | 
Group action invariants
| Degree $n$: | $18$ | 
     | |
| Transitive number $t$: | $37$ | 
     | |
| Parity: | $1$ | 
     | |
| Primitive: | no | 
     | |
| $\card{\Aut(F/K)}$: | $2$ | 
     | |
| Generators: | $(1,6,3,2,5,4)(7,12,10,8,11,9)(13,18,16)(14,17,15)$, $(1,6)(2,5)(3,4)(7,16,8,15)(9,14,10,13)(11,18,12,17)$, $(1,16)(2,15)(3,13)(4,14)(5,18)(6,17)(7,11)(8,12)$ | 
     | 
Low degree resolvents
$\card{(G/N)}$ Galois groups for stem field(s) $2$: $C_2$ $6$: $S_3$ x 4 $18$: $C_3^2:C_2$ $24$: $S_4$ Resolvents shown for degrees $\leq 47$
Subfields
Degree 2: None
Degree 3: $S_3$ x 4
Degree 6: $S_4$
Degree 9: $C_3^2:C_2$
Low degree siblings
12T44 x 3, 18T40, 24T79 x 3, 36T23, 36T56Siblings are shown with degree $\leq 47$
A number field with this Galois group has no arithmetically equivalent fields.
Conjugacy classes
| Label | Cycle Type | Size | Order | Index | Representative | 
| 1A | $1^{18}$ | $1$ | $1$ | $0$ | $()$ | 
| 2A | $2^{6},1^{6}$ | $3$ | $2$ | $6$ | $( 7, 8)( 9,10)(11,12)(13,14)(15,16)(17,18)$ | 
| 2B | $2^{8},1^{2}$ | $18$ | $2$ | $8$ | $( 1, 5)( 2, 6)( 7,16)( 8,15)( 9,14)(10,13)(11,18)(12,17)$ | 
| 3A | $3^{6}$ | $2$ | $3$ | $12$ | $( 1, 5, 3)( 2, 6, 4)( 7,11,10)( 8,12, 9)(13,18,16)(14,17,15)$ | 
| 3B | $3^{6}$ | $8$ | $3$ | $12$ | $( 1,14,11)( 2,13,12)( 3,15, 7)( 4,16, 8)( 5,17,10)( 6,18, 9)$ | 
| 3C | $3^{6}$ | $8$ | $3$ | $12$ | $( 1,15,10)( 2,16, 9)( 3,17,11)( 4,18,12)( 5,14, 7)( 6,13, 8)$ | 
| 3D | $3^{6}$ | $8$ | $3$ | $12$ | $( 1,17, 7)( 2,18, 8)( 3,14,10)( 4,13, 9)( 5,15,11)( 6,16,12)$ | 
| 4A | $4^{3},2^{3}$ | $18$ | $4$ | $12$ | $( 1, 4)( 2, 3)( 5, 6)( 7,13, 8,14)( 9,17,10,18)(11,16,12,15)$ | 
| 6A | $6^{2},3^{2}$ | $6$ | $6$ | $14$ | $( 1, 3, 5)( 2, 4, 6)( 7, 9,11, 8,10,12)(13,15,18,14,16,17)$ | 
Malle's constant $a(G)$: $1/6$
Character table
| 1A | 2A | 2B | 3A | 3B | 3C | 3D | 4A | 6A | ||
| Size | 1 | 3 | 18 | 2 | 8 | 8 | 8 | 18 | 6 | |
| 2 P | 1A | 1A | 1A | 3A | 3B | 3C | 3D | 2A | 3A | |
| 3 P | 1A | 2A | 2B | 1A | 1A | 1A | 1A | 4A | 2A | |
| Type | ||||||||||
| 72.43.1a | R | |||||||||
| 72.43.1b | R | |||||||||
| 72.43.2a | R | |||||||||
| 72.43.2b | R | |||||||||
| 72.43.2c | R | |||||||||
| 72.43.2d | R | |||||||||
| 72.43.3a | R | |||||||||
| 72.43.3b | R | |||||||||
| 72.43.6a | R | 
Regular extensions
Data not computed