Group action invariants
| Degree $n$ : | $18$ | |
| Transitive number $t$ : | $367$ | |
| Parity: | $-1$ | |
| Primitive: | No | |
| Nilpotency class: | $-1$ (not nilpotent) | |
| Generators: | (1,2)(3,5,4,6)(7,11)(8,12)(13,17,14,18)(15,16), (1,18,7,2,17,8)(3,13,9,4,14,10)(5,16,12,6,15,11) | |
| $|\Aut(F/K)|$: | $2$ |
Low degree resolvents
|G/N| Galois groups for stem field(s) 2: $C_2$ x 3 3: $C_3$ 4: $C_2^2$ 6: $S_3$, $C_6$ x 3 12: $D_{6}$, $C_6\times C_2$ 18: $S_3\times C_3$ 24: $S_4$ 36: $C_6\times S_3$ 48: $S_4\times C_2$ 72: 12T45 144: 18T61 288: $A_4\wr C_2$ 576: 12T158 1152: 12T205 Resolvents shown for degrees $\leq 47$
Subfields
Degree 2: None
Degree 6: None
Degree 9: $S_3\times C_3$
Low degree siblings
18T367Siblings are shown with degree $\leq 47$
A number field with this Galois group has no arithmetically equivalent fields.
Conjugacy Classes
| Cycle Type | Size | Order | Representative |
| $ 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1 $ | $1$ | $1$ | $()$ |
| $ 2, 2, 2, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1 $ | $9$ | $2$ | $( 3, 4)( 5, 6)(13,14)(17,18)$ |
| $ 2, 2, 2, 2, 2, 2, 1, 1, 1, 1, 1, 1 $ | $6$ | $2$ | $( 3, 4)( 5, 6)( 7, 8)( 9,10)(15,16)(17,18)$ |
| $ 2, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1 $ | $9$ | $2$ | $(13,14)(17,18)$ |
| $ 2, 2, 2, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1 $ | $18$ | $2$ | $( 7, 8)( 9,10)(15,16)(17,18)$ |
| $ 2, 2, 2, 2, 2, 2, 1, 1, 1, 1, 1, 1 $ | $18$ | $2$ | $( 3, 4)( 5, 6)( 7, 8)( 9,10)(13,14)(15,16)$ |
| $ 2, 2, 2, 2, 2, 2, 1, 1, 1, 1, 1, 1 $ | $3$ | $2$ | $( 3, 4)( 5, 6)( 7, 8)(11,12)(13,14)(17,18)$ |
| $ 3, 3, 3, 3, 3, 3 $ | $128$ | $3$ | $( 1, 6, 4)( 2, 5, 3)( 7,11,10)( 8,12, 9)(13,18,15)(14,17,16)$ |
| $ 2, 2, 2, 2, 2, 2, 1, 1, 1, 1, 1, 1 $ | $24$ | $2$ | $( 1, 5)( 2, 6)( 7,10)( 8, 9)(13,16)(14,15)$ |
| $ 4, 4, 2, 2, 2, 2, 1, 1 $ | $72$ | $4$ | $( 1, 6, 2, 5)( 3, 4)( 7,10)( 8, 9)(13,16,14,15)(17,18)$ |
| $ 4, 2, 2, 2, 2, 2, 1, 1, 1, 1 $ | $72$ | $4$ | $( 1, 5)( 2, 6)( 7,10)( 8, 9)(13,16,14,15)(17,18)$ |
| $ 4, 4, 4, 2, 2, 2 $ | $24$ | $4$ | $( 1, 6, 2, 5)( 3, 4)( 7, 9, 8,10)(11,12)(13,15,14,16)(17,18)$ |
| $ 3, 3, 3, 3, 3, 3 $ | $32$ | $3$ | $( 1, 7,17)( 2, 8,18)( 3, 9,14)( 4,10,13)( 5,12,15)( 6,11,16)$ |
| $ 6, 6, 3, 3 $ | $96$ | $6$ | $( 1, 7,18, 2, 8,17)( 3, 9,13)( 4,10,14)( 5,12,15, 6,11,16)$ |
| $ 6, 6, 3, 3 $ | $48$ | $6$ | $( 1,10,15, 2, 9,16)( 3,12,18)( 4,11,17)( 5, 8,13, 6, 7,14)$ |
| $ 3, 3, 3, 3, 3, 3 $ | $16$ | $3$ | $( 1,10,16)( 2, 9,15)( 3,12,18)( 4,11,17)( 5, 8,14)( 6, 7,13)$ |
| $ 12, 6 $ | $96$ | $12$ | $( 1,10,16, 2, 9,15)( 3, 8,18, 6,11,13, 4, 7,17, 5,12,14)$ |
| $ 6, 6, 3, 3 $ | $96$ | $6$ | $( 1,10,15)( 2, 9,16)( 3, 8,17, 5,12,14)( 4, 7,18, 6,11,13)$ |
| $ 3, 3, 3, 3, 3, 3 $ | $32$ | $3$ | $( 1,17, 7)( 2,18, 8)( 3,14, 9)( 4,13,10)( 5,15,12)( 6,16,11)$ |
| $ 6, 6, 3, 3 $ | $96$ | $6$ | $( 1,18, 8, 2,17, 7)( 3,13,10)( 4,14, 9)( 5,15,12, 6,16,11)$ |
| $ 6, 6, 3, 3 $ | $48$ | $6$ | $( 1,16,10)( 2,15, 9)( 3,17,11, 4,18,12)( 5,13, 7, 6,14, 8)$ |
| $ 3, 3, 3, 3, 3, 3 $ | $16$ | $3$ | $( 1,16,10)( 2,15, 9)( 3,18,12)( 4,17,11)( 5,14, 8)( 6,13, 7)$ |
| $ 12, 6 $ | $96$ | $12$ | $( 1,17,10, 4,16,11, 2,18, 9, 3,15,12)( 5,14, 8, 6,13, 7)$ |
| $ 6, 6, 3, 3 $ | $96$ | $6$ | $( 1,18, 9, 3,15,12)( 2,17,10, 4,16,11)( 5,13, 7)( 6,14, 8)$ |
| $ 2, 2, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1 $ | $18$ | $2$ | $( 5, 6)(11,12)(17,18)$ |
| $ 2, 2, 2, 2, 2, 2, 2, 1, 1, 1, 1 $ | $9$ | $2$ | $( 5, 6)( 7, 8)( 9,10)(11,12)(13,14)(15,16)(17,18)$ |
| $ 2, 2, 2, 2, 2, 1, 1, 1, 1, 1, 1, 1, 1 $ | $18$ | $2$ | $( 3, 4)( 7, 8)( 9,10)(11,12)(15,16)$ |
| $ 2, 2, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1 $ | $3$ | $2$ | $( 5, 6)( 7, 8)(13,14)$ |
| $ 2, 2, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1 $ | $6$ | $2$ | $( 5, 6)(11,12)(15,16)$ |
| $ 2, 2, 2, 2, 2, 1, 1, 1, 1, 1, 1, 1, 1 $ | $9$ | $2$ | $( 3, 4)(11,12)(13,14)(15,16)(17,18)$ |
| $ 2, 2, 2, 2, 2, 2, 2, 2, 2 $ | $1$ | $2$ | $( 1, 2)( 3, 4)( 5, 6)( 7, 8)( 9,10)(11,12)(13,14)(15,16)(17,18)$ |
| $ 6, 6, 6 $ | $128$ | $6$ | $( 1, 6, 3, 2, 5, 4)( 7,11, 9, 8,12,10)(13,18,16,14,17,15)$ |
| $ 4, 2, 2, 2, 2, 2, 2, 1, 1 $ | $72$ | $4$ | $( 1, 5, 2, 6)( 7,10)( 8, 9)(11,12)(13,16)(14,15)(17,18)$ |
| $ 4, 4, 4, 1, 1, 1, 1, 1, 1 $ | $24$ | $4$ | $( 1, 5, 2, 6)( 7, 9, 8,10)(13,15,14,16)$ |
| $ 4, 4, 2, 2, 2, 1, 1, 1, 1 $ | $72$ | $4$ | $( 1, 5, 2, 6)( 7,10)( 8, 9)(11,12)(13,16,14,15)$ |
| $ 2, 2, 2, 2, 2, 2, 2, 2, 2 $ | $24$ | $2$ | $( 1, 6)( 2, 5)( 3, 4)( 7,10)( 8, 9)(11,12)(13,16)(14,15)(17,18)$ |
| $ 6, 3, 3, 3, 3 $ | $96$ | $6$ | $( 1, 7,17, 2, 8,18)( 3, 9,14)( 4,10,13)( 5,11,15)( 6,12,16)$ |
| $ 6, 6, 6 $ | $32$ | $6$ | $( 1, 7,17, 2, 8,18)( 3,10,14, 4, 9,13)( 5,12,15, 6,11,16)$ |
| $ 6, 3, 3, 3, 3 $ | $48$ | $6$ | $( 1,10,15, 2, 9,16)( 3,12,17)( 4,11,18)( 5, 7,14)( 6, 8,13)$ |
| $ 6, 6, 6 $ | $16$ | $6$ | $( 1,10,15, 2, 9,16)( 3,12,18, 4,11,17)( 5, 7,13, 6, 8,14)$ |
| $ 6, 6, 6 $ | $96$ | $6$ | $( 1,10,16, 2, 9,15)( 3, 8,18, 5,11,14)( 4, 7,17, 6,12,13)$ |
| $ 12, 3, 3 $ | $96$ | $12$ | $( 1,10,15)( 2, 9,16)( 3, 8,17, 6,12,13, 4, 7,18, 5,11,14)$ |
| $ 6, 3, 3, 3, 3 $ | $96$ | $6$ | $( 1,17, 8, 2,18, 7)( 3,14, 9)( 4,13,10)( 5,16,11)( 6,15,12)$ |
| $ 6, 6, 6 $ | $32$ | $6$ | $( 1,17, 8, 2,18, 7)( 3,13, 9, 4,14,10)( 5,15,11, 6,16,12)$ |
| $ 6, 3, 3, 3, 3 $ | $48$ | $6$ | $( 1,16,10)( 2,15, 9)( 3,17,12, 4,18,11)( 5,14, 8)( 6,13, 7)$ |
| $ 6, 6, 6 $ | $16$ | $6$ | $( 1,15, 9, 2,16,10)( 3,17,12, 4,18,11)( 5,13, 7, 6,14, 8)$ |
| $ 12, 3, 3 $ | $96$ | $12$ | $( 1,17, 9, 3,15,12, 2,18,10, 4,16,11)( 5,13, 7)( 6,14, 8)$ |
| $ 6, 6, 6 $ | $96$ | $6$ | $( 1,18,10, 4,16,11)( 2,17, 9, 3,15,12)( 5,14, 8, 6,13, 7)$ |
Group invariants
| Order: | $2304=2^{8} \cdot 3^{2}$ | |
| Cyclic: | No | |
| Abelian: | No | |
| Solvable: | Yes | |
| GAP id: | Data not available |
| Character table: Data not available. |