Group action invariants
| Degree $n$ : | $18$ | |
| Transitive number $t$ : | $362$ | |
| Parity: | $-1$ | |
| Primitive: | No | |
| Nilpotency class: | $-1$ (not nilpotent) | |
| Generators: | (1,7,6,12,16,13)(2,8,4,10,17,14)(3,9,5,11,18,15), (4,12)(5,10)(6,11)(7,15,16)(8,13,17)(9,14,18) | |
| $|\Aut(F/K)|$: | $3$ |
Low degree resolvents
|G/N| Galois groups for stem field(s) 2: $C_2$ 3: $C_3$ 6: $C_6$ 720: $S_6$ Resolvents shown for degrees $\leq 47$
Subfields
Degree 2: None
Degree 3: $C_3$
Degree 6: $S_6$
Degree 9: None
Low degree siblings
18T362Siblings are shown with degree $\leq 47$
A number field with this Galois group has no arithmetically equivalent fields.
Conjugacy Classes
| Cycle Type | Size | Order | Representative |
| $ 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1 $ | $1$ | $1$ | $()$ |
| $ 3, 3, 3, 3, 3, 3 $ | $1$ | $3$ | $( 1, 3, 2)( 4, 6, 5)( 7, 9, 8)(10,12,11)(13,15,14)(16,18,17)$ |
| $ 3, 3, 3, 3, 3, 3 $ | $1$ | $3$ | $( 1, 2, 3)( 4, 5, 6)( 7, 8, 9)(10,11,12)(13,14,15)(16,17,18)$ |
| $ 2, 2, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1 $ | $15$ | $2$ | $(13,17)(14,18)(15,16)$ |
| $ 6, 3, 3, 3, 3 $ | $15$ | $6$ | $( 1, 3, 2)( 4, 6, 5)( 7, 9, 8)(10,12,11)(13,16,14,17,15,18)$ |
| $ 6, 3, 3, 3, 3 $ | $15$ | $6$ | $( 1, 2, 3)( 4, 5, 6)( 7, 8, 9)(10,11,12)(13,18,15,17,14,16)$ |
| $ 3, 3, 3, 1, 1, 1, 1, 1, 1, 1, 1, 1 $ | $40$ | $3$ | $(10,15,16)(11,13,17)(12,14,18)$ |
| $ 3, 3, 3, 3, 3, 3 $ | $40$ | $3$ | $( 1, 3, 2)( 4, 6, 5)( 7, 9, 8)(10,14,17)(11,15,18)(12,13,16)$ |
| $ 3, 3, 3, 3, 3, 3 $ | $40$ | $3$ | $( 1, 2, 3)( 4, 5, 6)( 7, 8, 9)(10,13,18)(11,14,16)(12,15,17)$ |
| $ 2, 2, 2, 2, 2, 2, 1, 1, 1, 1, 1, 1 $ | $45$ | $2$ | $( 7,10)( 8,11)( 9,12)(13,17)(14,18)(15,16)$ |
| $ 6, 6, 3, 3 $ | $45$ | $6$ | $( 1, 3, 2)( 4, 6, 5)( 7,12, 8,10, 9,11)(13,16,14,17,15,18)$ |
| $ 6, 6, 3, 3 $ | $45$ | $6$ | $( 1, 2, 3)( 4, 5, 6)( 7,11, 9,10, 8,12)(13,18,15,17,14,16)$ |
| $ 4, 4, 4, 1, 1, 1, 1, 1, 1 $ | $90$ | $4$ | $( 7,10,15,16)( 8,11,13,17)( 9,12,14,18)$ |
| $ 12, 3, 3 $ | $90$ | $12$ | $( 1, 3, 2)( 4, 6, 5)( 7,12,13,16, 9,11,15,18, 8,10,14,17)$ |
| $ 12, 3, 3 $ | $90$ | $12$ | $( 1, 2, 3)( 4, 5, 6)( 7,11,14,16, 8,12,15,17, 9,10,13,18)$ |
| $ 3, 3, 3, 2, 2, 2, 1, 1, 1 $ | $120$ | $6$ | $( 4, 9)( 5, 7)( 6, 8)(10,15,16)(11,13,17)(12,14,18)$ |
| $ 6, 3, 3, 3, 3 $ | $120$ | $6$ | $( 1, 3, 2)( 4, 8, 5, 9, 6, 7)(10,14,17)(11,15,18)(12,13,16)$ |
| $ 6, 3, 3, 3, 3 $ | $120$ | $6$ | $( 1, 2, 3)( 4, 7, 6, 9, 5, 8)(10,13,18)(11,14,16)(12,15,17)$ |
| $ 5, 5, 5, 1, 1, 1 $ | $144$ | $5$ | $( 4, 9,12,14,18)( 5, 7,10,15,16)( 6, 8,11,13,17)$ |
| $ 15, 3 $ | $144$ | $15$ | $( 1, 3, 2)( 4, 8,10,14,17, 5, 9,11,15,18, 6, 7,12,13,16)$ |
| $ 15, 3 $ | $144$ | $15$ | $( 1, 2, 3)( 4, 7,11,14,16, 6, 9,10,13,18, 5, 8,12,15,17)$ |
| $ 6, 6, 6 $ | $15$ | $6$ | $( 1, 6, 2, 4, 3, 5)( 7,12, 8,10, 9,11)(13,16,14,17,15,18)$ |
| $ 6, 6, 6 $ | $15$ | $6$ | $( 1, 5, 3, 4, 2, 6)( 7,11, 9,10, 8,12)(13,18,15,17,14,16)$ |
| $ 2, 2, 2, 2, 2, 2, 2, 2, 2 $ | $15$ | $2$ | $( 1, 4)( 2, 5)( 3, 6)( 7,10)( 8,11)( 9,12)(13,17)(14,18)(15,16)$ |
| $ 12, 6 $ | $90$ | $12$ | $( 1, 6, 2, 4, 3, 5)( 7,12,13,16, 9,11,15,18, 8,10,14,17)$ |
| $ 12, 6 $ | $90$ | $12$ | $( 1, 5, 3, 4, 2, 6)( 7,11,14,16, 8,12,15,17, 9,10,13,18)$ |
| $ 4, 4, 4, 2, 2, 2 $ | $90$ | $4$ | $( 1, 4)( 2, 5)( 3, 6)( 7,10,15,16)( 8,11,13,17)( 9,12,14,18)$ |
| $ 3, 3, 3, 3, 3, 3 $ | $40$ | $3$ | $( 1, 6, 7)( 2, 4, 8)( 3, 5, 9)(10,14,17)(11,15,18)(12,13,16)$ |
| $ 3, 3, 3, 3, 3, 3 $ | $40$ | $3$ | $( 1, 5, 8)( 2, 6, 9)( 3, 4, 7)(10,13,18)(11,14,16)(12,15,17)$ |
| $ 3, 3, 3, 3, 3, 3 $ | $40$ | $3$ | $( 1, 4, 9)( 2, 5, 7)( 3, 6, 8)(10,15,16)(11,13,17)(12,14,18)$ |
| $ 6, 6, 6 $ | $120$ | $6$ | $( 1, 6, 7,12,13,16)( 2, 4, 8,10,14,17)( 3, 5, 9,11,15,18)$ |
| $ 6, 6, 6 $ | $120$ | $6$ | $( 1, 5, 8,12,15,17)( 2, 6, 9,10,13,18)( 3, 4, 7,11,14,16)$ |
| $ 6, 6, 6 $ | $120$ | $6$ | $( 1, 4, 9,12,14,18)( 2, 5, 7,10,15,16)( 3, 6, 8,11,13,17)$ |
Group invariants
| Order: | $2160=2^{4} \cdot 3^{3} \cdot 5$ | |
| Cyclic: | No | |
| Abelian: | No | |
| Solvable: | No | |
| GAP id: | Data not available |
| Character table: Data not available. |