Group action invariants
| Degree $n$ : | $18$ | |
| Transitive number $t$ : | $314$ | |
| Parity: | $-1$ | |
| Primitive: | No | |
| Nilpotency class: | $-1$ (not nilpotent) | |
| Generators: | (1,12,9,3,15,6)(2,11,10,4,16,5)(7,17,13,8,18,14), (1,16,17,12,4,13)(2,15,18,11,3,14)(5,8,9)(6,7,10) | |
| $|\Aut(F/K)|$: | $6$ |
Low degree resolvents
|G/N| Galois groups for stem field(s) 2: $C_2$ x 3 4: $C_2^2$ 6: $S_3$ 12: $D_{6}$ 24: $S_4$ 48: $S_4\times C_2$ Resolvents shown for degrees $\leq 47$
Subfields
Degree 2: None
Degree 3: $S_3$
Degree 6: $S_4\times C_2$
Degree 9: $S_3\wr S_3$
Low degree siblings
9T31, 12T213, 18T300, 18T303, 18T311, 18T312, 18T315, 18T319, 18T320Siblings are shown with degree $\leq 47$
A number field with this Galois group has no arithmetically equivalent fields.
Conjugacy Classes
| Cycle Type | Size | Order | Representative |
| $ 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1 $ | $1$ | $1$ | $()$ |
| $ 3, 3, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1 $ | $6$ | $3$ | $( 5, 8, 9)( 6, 7,10)$ |
| $ 3, 3, 3, 3, 1, 1, 1, 1, 1, 1 $ | $12$ | $3$ | $( 1,17, 4)( 2,18, 3)( 5, 8, 9)( 6, 7,10)$ |
| $ 3, 3, 3, 3, 3, 3 $ | $8$ | $3$ | $( 1,17, 4)( 2,18, 3)( 5, 8, 9)( 6, 7,10)(11,14,15)(12,13,16)$ |
| $ 2, 2, 2, 2, 2, 2, 1, 1, 1, 1, 1, 1 $ | $27$ | $2$ | $( 1, 3)( 2, 4)(11,12)(13,15)(14,16)(17,18)$ |
| $ 3, 3, 2, 2, 2, 2, 2, 2 $ | $54$ | $6$ | $( 1, 3)( 2, 4)( 5, 8, 9)( 6, 7,10)(11,12)(13,15)(14,16)(17,18)$ |
| $ 3, 3, 3, 3, 3, 3 $ | $72$ | $3$ | $( 1, 9,15)( 2,10,16)( 3, 6,12)( 4, 5,11)( 7,13,18)( 8,14,17)$ |
| $ 9, 9 $ | $144$ | $9$ | $( 1, 5,11, 4, 8,14,17, 9,15)( 2, 6,12, 3, 7,13,18,10,16)$ |
| $ 2, 2, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1 $ | $9$ | $2$ | $(11,12)(13,15)(14,16)$ |
| $ 3, 3, 2, 2, 2, 1, 1, 1, 1, 1, 1 $ | $36$ | $6$ | $( 5, 8, 9)( 6, 7,10)(11,12)(13,15)(14,16)$ |
| $ 3, 3, 3, 3, 2, 2, 2 $ | $36$ | $6$ | $( 1,17, 4)( 2,18, 3)( 5, 8, 9)( 6, 7,10)(11,12)(13,15)(14,16)$ |
| $ 2, 2, 2, 2, 2, 2, 2, 2, 2 $ | $27$ | $2$ | $( 1, 2)( 3,17)( 4,18)( 5, 7)( 6, 8)( 9,10)(11,13)(12,14)(15,16)$ |
| $ 6, 6, 6 $ | $216$ | $6$ | $( 1, 9,15,18, 7,13)( 2,10,16,17, 8,14)( 3, 6,12, 4, 5,11)$ |
| $ 6, 6, 1, 1, 1, 1, 1, 1 $ | $36$ | $6$ | $( 1,16,17,12, 4,13)( 2,15,18,11, 3,14)$ |
| $ 6, 6, 3, 3 $ | $72$ | $6$ | $( 1,16,17,12, 4,13)( 2,15,18,11, 3,14)( 5, 8, 9)( 6, 7,10)$ |
| $ 2, 2, 2, 2, 2, 2, 1, 1, 1, 1, 1, 1 $ | $18$ | $2$ | $( 1,16)( 2,15)( 3,14)( 4,13)(11,18)(12,17)$ |
| $ 3, 3, 2, 2, 2, 2, 2, 2 $ | $36$ | $6$ | $( 1,16)( 2,15)( 3,14)( 4,13)( 5, 8, 9)( 6, 7,10)(11,18)(12,17)$ |
| $ 4, 4, 4, 2, 2, 2 $ | $162$ | $4$ | $( 1,11,18,16)( 2,12,17,15)( 3,13, 4,14)( 5, 7)( 6, 8)( 9,10)$ |
| $ 4, 4, 4, 1, 1, 1, 1, 1, 1 $ | $54$ | $4$ | $( 1,14, 2,13)( 3,16,17,11)( 4,15,18,12)$ |
| $ 4, 4, 4, 3, 3 $ | $108$ | $12$ | $( 1,14, 2,13)( 3,16,17,11)( 4,15,18,12)( 5, 8, 9)( 6, 7,10)$ |
| $ 6, 6, 2, 2, 2 $ | $108$ | $6$ | $( 1,13, 4,12,17,16)( 2,14, 3,11,18,15)( 5, 7)( 6, 8)( 9,10)$ |
| $ 2, 2, 2, 2, 2, 2, 2, 2, 2 $ | $54$ | $2$ | $( 1,13)( 2,14)( 3,11)( 4,12)( 5, 7)( 6, 8)( 9,10)(15,18)(16,17)$ |
Group invariants
| Order: | $1296=2^{4} \cdot 3^{4}$ | |
| Cyclic: | No | |
| Abelian: | No | |
| Solvable: | Yes | |
| GAP id: | [1296, 3490] |
| Character table: Data not available. |