Group action invariants
| Degree $n$ : | $18$ | |
| Transitive number $t$ : | $310$ | |
| Parity: | $-1$ | |
| Primitive: | No | |
| Nilpotency class: | $-1$ (not nilpotent) | |
| Generators: | (1,16,4,17,5,14,2,15,3,18,6,13)(7,10,11,8,9,12), (1,8,2,7)(3,12,4,11)(5,10,6,9)(13,15)(14,16) | |
| $|\Aut(F/K)|$: | $2$ |
Low degree resolvents
|G/N| Galois groups for stem field(s) 2: $C_2$ x 3 4: $C_2^2$ 6: $S_3$ x 2 12: $D_{6}$ x 2 24: $S_4$ 36: $S_3^2$ 48: $S_4\times C_2$ 108: $C_3^2 : D_{6} $ 144: 12T83 324: $((C_3^3:C_3):C_2):C_2$ 432: 18T152 Resolvents shown for degrees $\leq 47$
Subfields
Degree 2: None
Degree 3: $S_3$
Degree 6: $S_4\times C_2$
Degree 9: $((C_3^3:C_3):C_2):C_2$
Low degree siblings
18T299 x 3, 18T310 x 2, 18T316 x 3, 18T317 x 3Siblings are shown with degree $\leq 47$
A number field with this Galois group has no arithmetically equivalent fields.
Conjugacy Classes
| Cycle Type | Size | Order | Representative |
| $ 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1 $ | $1$ | $1$ | $()$ |
| $ 3, 3, 3, 3, 3, 3 $ | $6$ | $3$ | $( 1, 5, 3)( 2, 6, 4)( 7, 9,11)( 8,10,12)(13,17,15)(14,18,16)$ |
| $ 3, 3, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1 $ | $6$ | $3$ | $(13,17,15)(14,18,16)$ |
| $ 3, 3, 3, 3, 1, 1, 1, 1, 1, 1 $ | $6$ | $3$ | $( 1, 3, 5)( 2, 4, 6)( 7,11, 9)( 8,12,10)$ |
| $ 3, 3, 3, 3, 1, 1, 1, 1, 1, 1 $ | $6$ | $3$ | $( 1, 5, 3)( 2, 6, 4)(13,17,15)(14,18,16)$ |
| $ 3, 3, 3, 3, 3, 3 $ | $2$ | $3$ | $( 1, 3, 5)( 2, 4, 6)( 7, 9,11)( 8,10,12)(13,15,17)(14,16,18)$ |
| $ 6, 6, 3, 3 $ | $6$ | $6$ | $( 1, 4, 5, 2, 3, 6)( 7,11, 9)( 8,12,10)(13,16,17,14,15,18)$ |
| $ 2, 2, 2, 2, 2, 2, 1, 1, 1, 1, 1, 1 $ | $3$ | $2$ | $( 1, 2)( 3, 4)( 5, 6)(13,14)(15,16)(17,18)$ |
| $ 6, 3, 3, 2, 2, 2 $ | $12$ | $6$ | $( 1, 4, 5, 2, 3, 6)( 7,11, 9)( 8,12,10)(13,14)(15,16)(17,18)$ |
| $ 6, 2, 2, 2, 1, 1, 1, 1, 1, 1 $ | $12$ | $6$ | $( 1, 2)( 3, 4)( 5, 6)(13,18,15,14,17,16)$ |
| $ 6, 6, 3, 3 $ | $12$ | $6$ | $( 1, 6, 3, 2, 5, 4)( 7, 9,11)( 8,10,12)(13,16,17,14,15,18)$ |
| $ 6, 6, 3, 3 $ | $6$ | $6$ | $( 1, 4, 5, 2, 3, 6)( 7, 9,11)( 8,10,12)(13,16,17,14,15,18)$ |
| $ 3, 3, 2, 2, 2, 2, 2, 2 $ | $6$ | $6$ | $( 1, 2)( 3, 4)( 5, 6)( 7,11, 9)( 8,12,10)(13,14)(15,16)(17,18)$ |
| $ 6, 6, 1, 1, 1, 1, 1, 1 $ | $6$ | $6$ | $( 1, 6, 3, 2, 5, 4)(13,18,15,14,17,16)$ |
| $ 6, 3, 3, 2, 2, 2 $ | $12$ | $6$ | $( 1, 4, 5, 2, 3, 6)( 7, 9,11)( 8,10,12)(13,14)(15,16)(17,18)$ |
| $ 6, 6, 1, 1, 1, 1, 1, 1 $ | $6$ | $6$ | $( 1, 6, 3, 2, 5, 4)(13,16,17,14,15,18)$ |
| $ 3, 3, 3, 3, 3, 3 $ | $72$ | $3$ | $( 1,10,16)( 2, 9,15)( 3,12,18)( 4,11,17)( 5, 8,14)( 6, 7,13)$ |
| $ 9, 9 $ | $144$ | $9$ | $( 1,12,16, 5,10,14, 3, 8,18)( 2,11,15, 6, 9,13, 4, 7,17)$ |
| $ 6, 6, 1, 1, 1, 1, 1, 1 $ | $36$ | $6$ | $( 7,16,11,14, 9,18)( 8,15,12,13,10,17)$ |
| $ 6, 6, 3, 3 $ | $36$ | $6$ | $( 1, 5, 3)( 2, 6, 4)( 7,14,11,18, 9,16)( 8,13,12,17,10,15)$ |
| $ 6, 6, 3, 3 $ | $36$ | $6$ | $( 1, 3, 5)( 2, 4, 6)( 7,18,11,16, 9,14)( 8,17,12,15,10,13)$ |
| $ 2, 2, 2, 2, 2, 2, 1, 1, 1, 1, 1, 1 $ | $18$ | $2$ | $( 7,18)( 8,17)( 9,14)(10,13)(11,16)(12,15)$ |
| $ 3, 3, 2, 2, 2, 2, 2, 2 $ | $36$ | $6$ | $( 1, 5, 3)( 2, 6, 4)( 7,16)( 8,15)( 9,18)(10,17)(11,14)(12,13)$ |
| $ 12, 6 $ | $36$ | $12$ | $( 1, 4, 5, 2, 3, 6)( 7,17,12,16, 9,13, 8,18,11,15,10,14)$ |
| $ 12, 2, 2, 2 $ | $36$ | $12$ | $( 1, 2)( 3, 4)( 5, 6)( 7,15,12,14, 9,17, 8,16,11,13,10,18)$ |
| $ 12, 6 $ | $36$ | $12$ | $( 1, 6, 3, 2, 5, 4)( 7,13,12,18, 9,15, 8,14,11,17,10,16)$ |
| $ 6, 4, 4, 4 $ | $36$ | $12$ | $( 1, 4, 5, 2, 3, 6)( 7,13, 8,14)( 9,15,10,16)(11,17,12,18)$ |
| $ 4, 4, 4, 2, 2, 2 $ | $18$ | $4$ | $( 1, 2)( 3, 4)( 5, 6)( 7,17, 8,18)( 9,13,10,14)(11,15,12,16)$ |
| $ 2, 2, 2, 2, 2, 2, 2, 1, 1, 1, 1 $ | $81$ | $2$ | $( 3, 5)( 4, 6)( 7, 8)( 9,12)(10,11)(15,17)(16,18)$ |
| $ 2, 2, 2, 2, 2, 2, 2, 2, 2 $ | $27$ | $2$ | $( 1, 4)( 2, 3)( 5, 6)( 7,12)( 8,11)( 9,10)(13,16)(14,15)(17,18)$ |
| $ 6, 6, 6 $ | $216$ | $6$ | $( 1,10,17, 2, 9,18)( 3, 8,13, 6,11,16)( 4, 7,14, 5,12,15)$ |
| $ 4, 4, 4, 2, 2, 1, 1 $ | $54$ | $4$ | $( 3, 5)( 4, 6)( 7,15, 8,16)( 9,13,10,14)(11,17,12,18)$ |
| $ 12, 2, 2, 1, 1 $ | $108$ | $12$ | $( 1, 5)( 2, 6)( 7,13,12,16, 9,17, 8,14,11,15,10,18)$ |
| $ 6, 6, 2, 2, 2 $ | $108$ | $6$ | $( 1, 4)( 2, 3)( 5, 6)( 7,18, 9,16,11,14)( 8,17,10,15,12,13)$ |
| $ 2, 2, 2, 2, 2, 2, 2, 2, 2 $ | $54$ | $2$ | $( 1, 2)( 3, 6)( 4, 5)( 7,16)( 8,15)( 9,14)(10,13)(11,18)(12,17)$ |
Group invariants
| Order: | $1296=2^{4} \cdot 3^{4}$ | |
| Cyclic: | No | |
| Abelian: | No | |
| Solvable: | Yes | |
| GAP id: | [1296, 1790] |
| Character table: Data not available. |