Group action invariants
| Degree $n$ : | $18$ | |
| Transitive number $t$ : | $30$ | |
| Group : | $C_3\times S_4$ | |
| Parity: | $-1$ | |
| Primitive: | No | |
| Nilpotency class: | $-1$ (not nilpotent) | |
| Generators: | (1,3,5)(2,4,6)(7,18,11,15,9,13,8,17,12,16,10,14), (1,8,18)(2,7,17)(3,10,13)(4,9,14)(5,11,16)(6,12,15) | |
| $|\Aut(F/K)|$: | $6$ |
Low degree resolvents
|G/N| Galois groups for stem field(s) 2: $C_2$ 3: $C_3$ 6: $S_3$, $C_6$ 18: $S_3\times C_3$ 24: $S_4$ Resolvents shown for degrees $\leq 47$
Subfields
Degree 2: None
Degree 6: $S_4$
Degree 9: $S_3\times C_3$
Low degree siblings
12T45, 18T33Siblings are shown with degree $\leq 47$
A number field with this Galois group has no arithmetically equivalent fields.
Conjugacy Classes
| Cycle Type | Size | Order | Representative |
| $ 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1 $ | $1$ | $1$ | $()$ |
| $ 2, 2, 2, 2, 2, 2, 1, 1, 1, 1, 1, 1 $ | $3$ | $2$ | $( 7, 8)( 9,10)(11,12)(13,14)(15,16)(17,18)$ |
| $ 4, 4, 4, 1, 1, 1, 1, 1, 1 $ | $6$ | $4$ | $( 7,15, 8,16)( 9,17,10,18)(11,13,12,14)$ |
| $ 2, 2, 2, 2, 2, 2, 2, 2, 2 $ | $6$ | $2$ | $( 1, 2)( 3, 4)( 5, 6)( 7,15)( 8,16)( 9,17)(10,18)(11,13)(12,14)$ |
| $ 3, 3, 3, 3, 3, 3 $ | $1$ | $3$ | $( 1, 3, 5)( 2, 4, 6)( 7, 9,12)( 8,10,11)(13,16,18)(14,15,17)$ |
| $ 6, 6, 3, 3 $ | $3$ | $6$ | $( 1, 3, 5)( 2, 4, 6)( 7,10,12, 8, 9,11)(13,15,18,14,16,17)$ |
| $ 12, 3, 3 $ | $6$ | $12$ | $( 1, 3, 5)( 2, 4, 6)( 7,17,11,16, 9,14, 8,18,12,15,10,13)$ |
| $ 6, 6, 6 $ | $6$ | $6$ | $( 1, 4, 5, 2, 3, 6)( 7,17,12,15, 9,14)( 8,18,11,16,10,13)$ |
| $ 6, 6, 3, 3 $ | $3$ | $6$ | $( 1, 5, 3)( 2, 6, 4)( 7,11, 9, 8,12,10)(13,17,16,14,18,15)$ |
| $ 3, 3, 3, 3, 3, 3 $ | $1$ | $3$ | $( 1, 5, 3)( 2, 6, 4)( 7,12, 9)( 8,11,10)(13,18,16)(14,17,15)$ |
| $ 12, 3, 3 $ | $6$ | $12$ | $( 1, 5, 3)( 2, 6, 4)( 7,13,10,15,12,18, 8,14, 9,16,11,17)$ |
| $ 6, 6, 6 $ | $6$ | $6$ | $( 1, 6, 3, 2, 5, 4)( 7,13, 9,16,12,18)( 8,14,10,15,11,17)$ |
| $ 3, 3, 3, 3, 3, 3 $ | $8$ | $3$ | $( 1, 7,17)( 2, 8,18)( 3, 9,14)( 4,10,13)( 5,12,15)( 6,11,16)$ |
| $ 3, 3, 3, 3, 3, 3 $ | $8$ | $3$ | $( 1, 9,16)( 2,10,15)( 3,12,18)( 4,11,17)( 5, 7,13)( 6, 8,14)$ |
| $ 3, 3, 3, 3, 3, 3 $ | $8$ | $3$ | $( 1,11,13)( 2,12,14)( 3, 8,16)( 4, 7,15)( 5,10,18)( 6, 9,17)$ |
Group invariants
| Order: | $72=2^{3} \cdot 3^{2}$ | |
| Cyclic: | No | |
| Abelian: | No | |
| Solvable: | Yes | |
| GAP id: | [72, 42] |
| Character table: |
2 3 3 2 2 3 3 2 2 3 3 2 2 . . .
3 2 1 1 1 2 1 1 1 1 2 1 1 2 2 2
1a 2a 4a 2b 3a 6a 12a 6b 6c 3b 12b 6d 3c 3d 3e
2P 1a 1a 2a 1a 3b 3b 6c 3b 3a 3a 6a 3a 3d 3c 3e
3P 1a 2a 4a 2b 1a 2a 4a 2b 2a 1a 4a 2b 1a 1a 1a
5P 1a 2a 4a 2b 3b 6c 12b 6d 6a 3a 12a 6b 3d 3c 3e
7P 1a 2a 4a 2b 3a 6a 12a 6b 6c 3b 12b 6d 3c 3d 3e
11P 1a 2a 4a 2b 3b 6c 12b 6d 6a 3a 12a 6b 3d 3c 3e
X.1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
X.2 1 1 -1 -1 1 1 -1 -1 1 1 -1 -1 1 1 1
X.3 1 1 -1 -1 A A -A -A /A /A -/A -/A A /A 1
X.4 1 1 -1 -1 /A /A -/A -/A A A -A -A /A A 1
X.5 1 1 1 1 A A A A /A /A /A /A A /A 1
X.6 1 1 1 1 /A /A /A /A A A A A /A A 1
X.7 2 2 . . 2 2 . . 2 2 . . -1 -1 -1
X.8 2 2 . . B B . . /B /B . . -A -/A -1
X.9 2 2 . . /B /B . . B B . . -/A -A -1
X.10 3 -1 -1 1 3 -1 -1 1 -1 3 -1 1 . . .
X.11 3 -1 1 -1 3 -1 1 -1 -1 3 1 -1 . . .
X.12 3 -1 -1 1 C -A -A A -/A /C -/A /A . . .
X.13 3 -1 -1 1 /C -/A -/A /A -A C -A A . . .
X.14 3 -1 1 -1 C -A A -A -/A /C /A -/A . . .
X.15 3 -1 1 -1 /C -/A /A -/A -A C A -A . . .
A = E(3)^2
= (-1-Sqrt(-3))/2 = -1-b3
B = 2*E(3)^2
= -1-Sqrt(-3) = -1-i3
C = 3*E(3)^2
= (-3-3*Sqrt(-3))/2 = -3-3b3
|