Group action invariants
| Degree $n$ : | $18$ | |
| Transitive number $t$ : | $29$ | |
| Group : | $C_2\times S_3^2$ | |
| Parity: | $-1$ | |
| Primitive: | No | |
| Nilpotency class: | $-1$ (not nilpotent) | |
| Generators: | (1,9,13,3,7,16)(2,10,14,4,8,15)(5,12,18,6,11,17), (3,17)(4,18)(5,10)(6,9)(11,15)(12,16), (1,2)(3,18)(4,17)(5,16)(6,15)(7,14)(8,13)(9,11)(10,12) | |
| $|\Aut(F/K)|$: | $2$ |
Low degree resolvents
|G/N| Galois groups for stem field(s) 2: $C_2$ x 7 4: $C_2^2$ x 7 6: $S_3$ x 2 8: $C_2^3$ 12: $D_{6}$ x 6 24: $S_3 \times C_2^2$ x 2 36: $S_3^2$ Resolvents shown for degrees $\leq 47$
Subfields
Degree 2: $C_2$
Degree 3: $S_3$ x 2
Degree 6: $D_{6}$ x 2
Degree 9: $S_3^2$
Low degree siblings
12T37 x 2, 18T29 x 3Siblings are shown with degree $\leq 47$
A number field with this Galois group has no arithmetically equivalent fields.
Conjugacy Classes
| Cycle Type | Size | Order | Representative |
| $ 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1 $ | $1$ | $1$ | $()$ |
| $ 2, 2, 2, 2, 2, 2, 1, 1, 1, 1, 1, 1 $ | $3$ | $2$ | $( 5,11)( 6,12)( 7,13)( 8,14)( 9,16)(10,15)$ |
| $ 2, 2, 2, 2, 2, 2, 1, 1, 1, 1, 1, 1 $ | $3$ | $2$ | $( 3,17)( 4,18)( 5,10)( 6, 9)(11,15)(12,16)$ |
| $ 2, 2, 2, 2, 2, 2, 2, 2, 1, 1 $ | $9$ | $2$ | $( 3,17)( 4,18)( 5,15)( 6,16)( 7,13)( 8,14)( 9,12)(10,11)$ |
| $ 2, 2, 2, 2, 2, 2, 2, 2, 2 $ | $1$ | $2$ | $( 1, 2)( 3, 4)( 5, 6)( 7, 8)( 9,10)(11,12)(13,14)(15,16)(17,18)$ |
| $ 2, 2, 2, 2, 2, 2, 2, 2, 2 $ | $3$ | $2$ | $( 1, 2)( 3, 4)( 5,12)( 6,11)( 7,14)( 8,13)( 9,15)(10,16)(17,18)$ |
| $ 2, 2, 2, 2, 2, 2, 2, 2, 2 $ | $3$ | $2$ | $( 1, 2)( 3,18)( 4,17)( 5, 9)( 6,10)( 7, 8)(11,16)(12,15)(13,14)$ |
| $ 2, 2, 2, 2, 2, 2, 2, 2, 2 $ | $9$ | $2$ | $( 1, 2)( 3,18)( 4,17)( 5,16)( 6,15)( 7,14)( 8,13)( 9,11)(10,12)$ |
| $ 6, 6, 6 $ | $2$ | $6$ | $( 1, 3,18, 2, 4,17)( 5, 8,10, 6, 7, 9)(11,14,15,12,13,16)$ |
| $ 6, 6, 6 $ | $6$ | $6$ | $( 1, 3,18, 2, 4,17)( 5,14,10,12, 7,16)( 6,13, 9,11, 8,15)$ |
| $ 3, 3, 3, 3, 3, 3 $ | $2$ | $3$ | $( 1, 4,18)( 2, 3,17)( 5, 7,10)( 6, 8, 9)(11,13,15)(12,14,16)$ |
| $ 6, 6, 3, 3 $ | $6$ | $6$ | $( 1, 4,18)( 2, 3,17)( 5,13,10,11, 7,15)( 6,14, 9,12, 8,16)$ |
| $ 3, 3, 3, 3, 3, 3 $ | $4$ | $3$ | $( 1, 5,15)( 2, 6,16)( 3, 8,12)( 4, 7,11)( 9,14,17)(10,13,18)$ |
| $ 6, 6, 3, 3 $ | $6$ | $6$ | $( 1, 5,13,18, 7,11)( 2, 6,14,17, 8,12)( 3, 9,16)( 4,10,15)$ |
| $ 6, 6, 6 $ | $4$ | $6$ | $( 1, 6,15, 2, 5,16)( 3, 7,12, 4, 8,11)( 9,13,17,10,14,18)$ |
| $ 6, 6, 6 $ | $6$ | $6$ | $( 1, 6,13,17, 7,12)( 2, 5,14,18, 8,11)( 3,10,16, 4, 9,15)$ |
| $ 3, 3, 3, 3, 3, 3 $ | $2$ | $3$ | $( 1, 7,13)( 2, 8,14)( 3, 9,16)( 4,10,15)( 5,11,18)( 6,12,17)$ |
| $ 6, 6, 6 $ | $2$ | $6$ | $( 1, 8,13, 2, 7,14)( 3,10,16, 4, 9,15)( 5,12,18, 6,11,17)$ |
Group invariants
| Order: | $72=2^{3} \cdot 3^{2}$ | |
| Cyclic: | No | |
| Abelian: | No | |
| Solvable: | Yes | |
| GAP id: | [72, 46] |
| Character table: |
2 3 3 3 3 3 3 3 3 2 2 2 2 1 2 1 2 2 2
3 2 1 1 . 2 1 1 . 2 1 2 1 2 1 2 1 2 2
1a 2a 2b 2c 2d 2e 2f 2g 6a 6b 3a 6c 3b 6d 6e 6f 3c 6g
2P 1a 1a 1a 1a 1a 1a 1a 1a 3a 3a 3a 3a 3b 3c 3b 3c 3c 3c
3P 1a 2a 2b 2c 2d 2e 2f 2g 2d 2e 1a 2a 1a 2b 2d 2f 1a 2d
5P 1a 2a 2b 2c 2d 2e 2f 2g 6a 6b 3a 6c 3b 6d 6e 6f 3c 6g
X.1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
X.2 1 -1 -1 1 -1 1 1 -1 -1 1 1 -1 1 -1 -1 1 1 -1
X.3 1 -1 -1 1 1 -1 -1 1 1 -1 1 -1 1 -1 1 -1 1 1
X.4 1 -1 1 -1 -1 1 -1 1 -1 1 1 -1 1 1 -1 -1 1 -1
X.5 1 -1 1 -1 1 -1 1 -1 1 -1 1 -1 1 1 1 1 1 1
X.6 1 1 -1 -1 -1 -1 1 1 -1 -1 1 1 1 -1 -1 1 1 -1
X.7 1 1 -1 -1 1 1 -1 -1 1 1 1 1 1 -1 1 -1 1 1
X.8 1 1 1 1 -1 -1 -1 -1 -1 -1 1 1 1 1 -1 -1 1 -1
X.9 2 . -2 . -2 . 2 . -2 . 2 . -1 1 1 -1 -1 1
X.10 2 . -2 . 2 . -2 . 2 . 2 . -1 1 -1 1 -1 -1
X.11 2 . 2 . -2 . -2 . -2 . 2 . -1 -1 1 1 -1 1
X.12 2 . 2 . 2 . 2 . 2 . 2 . -1 -1 -1 -1 -1 -1
X.13 2 -2 . . -2 2 . . 1 -1 -1 1 -1 . 1 . 2 -2
X.14 2 -2 . . 2 -2 . . -1 1 -1 1 -1 . -1 . 2 2
X.15 2 2 . . -2 -2 . . 1 1 -1 -1 -1 . 1 . 2 -2
X.16 2 2 . . 2 2 . . -1 -1 -1 -1 -1 . -1 . 2 2
X.17 4 . . . 4 . . . -2 . -2 . 1 . 1 . -2 -2
X.18 4 . . . -4 . . . 2 . -2 . 1 . -1 . -2 2
|