Properties

Label 18T282
Order \(1296\)
n \(18\)
Cyclic No
Abelian No
Solvable Yes
Primitive No
$p$-group No

Related objects

Learn more about

Group action invariants

Degree $n$ :  $18$
Transitive number $t$ :  $282$
Parity:  $-1$
Primitive:  No
Nilpotency class:  $-1$ (not nilpotent)
Generators:  (1,8,16,3,12,18)(2,7,15,4,11,17)(5,9,14,6,10,13), (1,3)(2,4)(5,6)(7,10)(8,9)(11,12)(15,18)(16,17)
$|\Aut(F/K)|$:  $2$

Low degree resolvents

|G/N|Galois groups for stem field(s)
2:  $C_2$ x 3
3:  $C_3$
4:  $C_2^2$
6:  $S_3$, $C_6$ x 3
12:  $A_4$, $D_{6}$, $C_6\times C_2$
18:  $S_3\times C_3$
24:  $A_4\times C_2$ x 3
36:  $C_6\times S_3$
48:  $C_2^2 \times A_4$
54:  $C_3^2 : C_6$
72:  12T43
108:  18T41
144:  18T60
162:  $(C_3^2:C_3):C_2$
216:  18T100
324:  18T125
432:  18T148
648:  18T200

Resolvents shown for degrees $\leq 47$

Subfields

Degree 2: None

Degree 3: $C_3$

Degree 6: $A_4\times C_2$

Degree 9: $(C_3^2:C_3):C_2$

Low degree siblings

18T282 x 17

Siblings are shown with degree $\leq 47$

A number field with this Galois group has no arithmetically equivalent fields.

Conjugacy Classes

There are 56 conjugacy classes of elements. Data not shown.

Group invariants

Order:  $1296=2^{4} \cdot 3^{4}$
Cyclic:  No
Abelian:  No
Solvable:  Yes
GAP id:  [1296, 1855]
Character table: Data not available.