Group action invariants
| Degree $n$ : | $18$ | |
| Transitive number $t$ : | $273$ | |
| Parity: | $-1$ | |
| Primitive: | No | |
| Nilpotency class: | $-1$ (not nilpotent) | |
| Generators: | (1,17,7)(2,18,8)(3,13,10,5,16,12,4,14,9,6,15,11), (1,18,13,6)(2,17,14,5)(3,8,16,11,4,7,15,12)(9,10) | |
| $|\Aut(F/K)|$: | $2$ |
Low degree resolvents
|G/N| Galois groups for stem field(s) 2: $C_2$ x 3 4: $C_2^2$ 8: $D_{4}$ 72: $C_3^2:D_4$ Resolvents shown for degrees $\leq 47$
Subfields
Degree 2: None
Degree 3: None
Degree 6: None
Degree 9: $S_3^2:C_2$
Low degree siblings
8T47, 12T200, 12T201, 12T202, 12T203, 16T1292, 16T1294, 16T1295, 16T1296, 18T272, 18T274, 18T275Siblings are shown with degree $\leq 47$
A number field with this Galois group has no arithmetically equivalent fields.
Conjugacy Classes
| Cycle Type | Size | Order | Representative |
| $ 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1 $ | $1$ | $1$ | $()$ |
| $ 2, 2, 2, 2, 2, 2, 1, 1, 1, 1, 1, 1 $ | $6$ | $2$ | $( 1, 2)( 5, 6)( 7, 8)(11,12)(13,14)(17,18)$ |
| $ 2, 2, 2, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1 $ | $9$ | $2$ | $( 1, 2)( 5, 6)( 9,10)(15,16)$ |
| $ 3, 3, 3, 3, 3, 3 $ | $16$ | $3$ | $( 1,17, 7)( 2,18, 8)( 3,16, 9)( 4,15,10)( 5,14,11)( 6,13,12)$ |
| $ 6, 6, 3, 3 $ | $48$ | $6$ | $( 1,18, 7, 2,17, 8)( 3,16, 9)( 4,15,10)( 5,13,11, 6,14,12)$ |
| $ 3, 3, 3, 3, 3, 3 $ | $64$ | $3$ | $( 1,13, 9)( 2,14,10)( 3,17,12)( 4,18,11)( 5,15, 8)( 6,16, 7)$ |
| $ 4, 4, 4, 1, 1, 1, 1, 1, 1 $ | $12$ | $4$ | $( 3, 6, 4, 5)( 9,12,10,11)(13,15,14,16)$ |
| $ 2, 2, 2, 2, 2, 2, 2, 2, 2 $ | $12$ | $2$ | $( 1, 2)( 3, 5)( 4, 6)( 7, 8)( 9,11)(10,12)(13,15)(14,16)(17,18)$ |
| $ 4, 4, 4, 2, 2, 1, 1 $ | $36$ | $4$ | $( 3, 6, 4, 5)( 7, 8)( 9,11,10,12)(13,16,14,15)(17,18)$ |
| $ 2, 2, 2, 2, 2, 2, 2, 1, 1, 1, 1 $ | $36$ | $2$ | $( 1, 2)( 3, 5)( 4, 6)( 9,12)(10,11)(13,16)(14,15)$ |
| $ 12, 3, 3 $ | $96$ | $12$ | $( 1,17, 7)( 2,18, 8)( 3,13,10, 5,16,12, 4,14, 9, 6,15,11)$ |
| $ 6, 6, 6 $ | $96$ | $6$ | $( 1,18, 7, 2,17, 8)( 3,14, 9, 5,16,11)( 4,13,10, 6,15,12)$ |
| $ 4, 4, 2, 2, 2, 2, 1, 1 $ | $36$ | $4$ | $( 3, 6, 4, 5)( 7,18, 8,17)( 9,14)(10,13)(11,15)(12,16)$ |
| $ 4, 4, 4, 2, 2, 2 $ | $72$ | $4$ | $( 1, 2)( 3, 5)( 4, 6)( 7,17, 8,18)( 9,13,10,14)(11,15,12,16)$ |
| $ 2, 2, 2, 2, 2, 2, 2, 2, 1, 1 $ | $36$ | $2$ | $( 3, 5)( 4, 6)( 7,17)( 8,18)( 9,14)(10,13)(11,16)(12,15)$ |
| $ 4, 4, 4, 4, 1, 1 $ | $144$ | $4$ | $( 3,17, 6, 8)( 4,18, 5, 7)( 9,15,14,12)(10,16,13,11)$ |
| $ 8, 4, 4, 2 $ | $144$ | $8$ | $( 1, 2)( 3,18, 6, 7, 4,17, 5, 8)( 9,15,13,12)(10,16,14,11)$ |
| $ 4, 4, 2, 2, 2, 1, 1, 1, 1 $ | $72$ | $4$ | $( 3,17, 4,18)( 5, 7)( 6, 8)( 9,14,10,13)(15,16)$ |
| $ 2, 2, 2, 2, 2, 2, 2, 2, 2 $ | $24$ | $2$ | $( 1, 2)( 3,18)( 4,17)( 5, 8)( 6, 7)( 9,13)(10,14)(11,12)(15,16)$ |
| $ 6, 6, 6 $ | $192$ | $6$ | $( 1,17,15, 9,11, 5)( 2,18,16,10,12, 6)( 3, 7,14, 4, 8,13)$ |
Group invariants
| Order: | $1152=2^{7} \cdot 3^{2}$ | |
| Cyclic: | No | |
| Abelian: | No | |
| Solvable: | Yes | |
| GAP id: | Data not available |
| Character table: |
2 7 6 7 3 3 1 5 5 5 5 2 2 5 4 5 3 3 4 4 1
3 2 1 . 2 1 2 1 1 . . 1 1 . . . . . . 1 1
1a 2a 2b 3a 6a 3b 4a 2c 4b 2d 12a 6b 4c 4d 2e 4e 8a 4f 2f 6c
2P 1a 1a 1a 3a 3a 3b 2a 1a 2a 1a 6a 3a 2b 2a 1a 2e 4c 2b 1a 3b
3P 1a 2a 2b 1a 2a 1a 4a 2c 4b 2d 4a 2c 4c 4d 2e 4e 8a 4f 2f 2f
5P 1a 2a 2b 3a 6a 3b 4a 2c 4b 2d 12a 6b 4c 4d 2e 4e 8a 4f 2f 6c
7P 1a 2a 2b 3a 6a 3b 4a 2c 4b 2d 12a 6b 4c 4d 2e 4e 8a 4f 2f 6c
11P 1a 2a 2b 3a 6a 3b 4a 2c 4b 2d 12a 6b 4c 4d 2e 4e 8a 4f 2f 6c
X.1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
X.2 1 1 1 1 1 1 -1 -1 -1 -1 -1 -1 1 1 1 -1 -1 1 1 1
X.3 1 1 1 1 1 1 -1 -1 -1 -1 -1 -1 1 1 1 1 1 -1 -1 -1
X.4 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 -1 -1 -1 -1 -1
X.5 2 2 2 2 2 2 . . . . . . -2 -2 -2 . . . . .
X.6 4 4 4 1 1 -2 2 2 2 2 -1 -1 . . . . . . . .
X.7 4 4 4 1 1 -2 -2 -2 -2 -2 1 1 . . . . . . . .
X.8 4 4 4 -2 -2 1 . . . . . . . . . . . -2 -2 1
X.9 4 4 4 -2 -2 1 . . . . . . . . . . . 2 2 -1
X.10 6 2 -2 3 -1 . -2 -4 2 . 1 -1 -2 . 2 . . . . .
X.11 6 2 -2 3 -1 . -4 -2 . 2 -1 1 2 . -2 . . . . .
X.12 6 2 -2 3 -1 . 2 4 -2 . -1 1 -2 . 2 . . . . .
X.13 6 2 -2 3 -1 . 4 2 . -2 1 -1 2 . -2 . . . . .
X.14 9 -3 1 . . . -3 3 1 -1 . . 1 -1 1 -1 1 1 -3 .
X.15 9 -3 1 . . . -3 3 1 -1 . . 1 -1 1 1 -1 -1 3 .
X.16 9 -3 1 . . . 3 -3 -1 1 . . 1 -1 1 -1 1 -1 3 .
X.17 9 -3 1 . . . 3 -3 -1 1 . . 1 -1 1 1 -1 1 -3 .
X.18 12 4 -4 -3 1 . 2 -2 2 -2 -1 1 . . . . . . . .
X.19 12 4 -4 -3 1 . -2 2 -2 2 1 -1 . . . . . . . .
X.20 18 -6 2 . . . . . . . . . -2 2 -2 . . . . .
|