Group action invariants
| Degree $n$ : | $18$ | |
| Transitive number $t$ : | $269$ | |
| Parity: | $1$ | |
| Primitive: | No | |
| Nilpotency class: | $-1$ (not nilpotent) | |
| Generators: | (1,6,2,5)(3,4)(7,9)(8,10)(13,16)(14,15), (1,10,15)(2,9,16)(3,8,18,5,12,14)(4,7,17,6,11,13) | |
| $|\Aut(F/K)|$: | $2$ |
Low degree resolvents
|G/N| Galois groups for stem field(s) 2: $C_2$ 3: $C_3$ 6: $S_3$, $C_6$ 18: $S_3\times C_3$ 24: $S_4$ 72: 12T45 288: $A_4\wr C_2$ Resolvents shown for degrees $\leq 47$
Subfields
Degree 2: None
Degree 6: None
Degree 9: $S_3\times C_3$
Low degree siblings
12T205, 18T270Siblings are shown with degree $\leq 47$
A number field with this Galois group has no arithmetically equivalent fields.
Conjugacy Classes
| Cycle Type | Size | Order | Representative |
| $ 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1 $ | $1$ | $1$ | $()$ |
| $ 2, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1 $ | $9$ | $2$ | $( 1, 2)( 5, 6)$ |
| $ 2, 2, 2, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1 $ | $18$ | $2$ | $( 1, 2)( 5, 6)( 9,10)(11,12)$ |
| $ 2, 2, 2, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1 $ | $9$ | $2$ | $( 1, 2)( 5, 6)(13,14)(15,16)$ |
| $ 2, 2, 2, 2, 2, 2, 1, 1, 1, 1, 1, 1 $ | $18$ | $2$ | $( 1, 2)( 5, 6)( 9,10)(11,12)(13,14)(15,16)$ |
| $ 2, 2, 2, 2, 2, 2, 1, 1, 1, 1, 1, 1 $ | $3$ | $2$ | $( 1, 2)( 5, 6)( 7, 8)( 9,10)(13,14)(15,16)$ |
| $ 2, 2, 2, 2, 2, 2, 1, 1, 1, 1, 1, 1 $ | $6$ | $2$ | $( 1, 2)( 5, 6)( 9,10)(11,12)(13,14)(17,18)$ |
| $ 3, 3, 3, 3, 3, 3 $ | $128$ | $3$ | $( 1, 5, 3)( 2, 6, 4)( 7,11, 9)( 8,12,10)(13,17,16)(14,18,15)$ |
| $ 2, 2, 2, 2, 2, 2, 1, 1, 1, 1, 1, 1 $ | $24$ | $2$ | $( 3, 5)( 4, 6)( 7,11)( 8,12)(13,17)(14,18)$ |
| $ 4, 2, 2, 2, 2, 2, 1, 1, 1, 1 $ | $72$ | $4$ | $( 1, 2)( 3, 6, 4, 5)( 7,11)( 8,12)(13,17)(14,18)$ |
| $ 4, 4, 2, 2, 2, 2, 1, 1 $ | $72$ | $4$ | $( 1, 2)( 3, 6, 4, 5)( 7,12, 8,11)( 9,10)(13,17)(14,18)$ |
| $ 4, 4, 4, 2, 2, 2 $ | $24$ | $4$ | $( 1, 2)( 3, 6, 4, 5)( 7,12, 8,11)( 9,10)(13,17,14,18)(15,16)$ |
| $ 3, 3, 3, 3, 3, 3 $ | $16$ | $3$ | $( 1,15,10)( 2,16, 9)( 3,18,12)( 4,17,11)( 5,14, 8)( 6,13, 7)$ |
| $ 6, 6, 3, 3 $ | $48$ | $6$ | $( 1,15,10, 2,16, 9)( 3,18,12)( 4,17,11)( 5,14, 8, 6,13, 7)$ |
| $ 3, 3, 3, 3, 3, 3 $ | $32$ | $3$ | $( 1,14,12)( 2,13,11)( 3,15, 8)( 4,16, 7)( 5,18,10)( 6,17, 9)$ |
| $ 6, 6, 3, 3 $ | $96$ | $6$ | $( 1,14,12, 2,13,11)( 3,15, 8)( 4,16, 7)( 5,18,10, 6,17, 9)$ |
| $ 6, 6, 3, 3 $ | $96$ | $6$ | $( 1,15,10)( 2,16, 9)( 3,14,12, 5,18, 8)( 4,13,11, 6,17, 7)$ |
| $ 12, 6 $ | $96$ | $12$ | $( 1,15,10, 2,16, 9)( 3,14,12, 6,17, 7, 4,13,11, 5,18, 8)$ |
| $ 3, 3, 3, 3, 3, 3 $ | $16$ | $3$ | $( 1,10,15)( 2, 9,16)( 3,12,18)( 4,11,17)( 5, 8,14)( 6, 7,13)$ |
| $ 6, 6, 3, 3 $ | $48$ | $6$ | $( 1,10,15, 2, 9,16)( 3,12,18)( 4,11,17)( 5, 8,14, 6, 7,13)$ |
| $ 3, 3, 3, 3, 3, 3 $ | $32$ | $3$ | $( 1, 8,18)( 2, 7,17)( 3,10,14)( 4, 9,13)( 5,12,15)( 6,11,16)$ |
| $ 6, 6, 3, 3 $ | $96$ | $6$ | $( 1, 8,18, 2, 7,17)( 3,10,14)( 4, 9,13)( 5,12,15, 6,11,16)$ |
| $ 6, 6, 3, 3 $ | $96$ | $6$ | $( 1,10,15)( 2, 9,16)( 3, 8,18, 5,12,14)( 4, 7,17, 6,11,13)$ |
| $ 12, 6 $ | $96$ | $12$ | $( 1,10,15, 2, 9,16)( 3, 8,18, 6,11,13, 4, 7,17, 5,12,14)$ |
Group invariants
| Order: | $1152=2^{7} \cdot 3^{2}$ | |
| Cyclic: | No | |
| Abelian: | No | |
| Solvable: | Yes | |
| GAP id: | Data not available |
| Character table: Data not available. |