Group action invariants
| Degree $n$ : | $18$ | |
| Transitive number $t$ : | $268$ | |
| Parity: | $1$ | |
| Primitive: | No | |
| Nilpotency class: | $-1$ (not nilpotent) | |
| Generators: | (1,3,5)(2,4,6)(7,17,12,16,10,13)(8,18,11,15,9,14), (1,18,4,14,5,16)(2,17,3,13,6,15)(7,12,9)(8,11,10) | |
| $|\Aut(F/K)|$: | $2$ |
Low degree resolvents
|G/N| Galois groups for stem field(s) 2: $C_2$ 3: $C_3$ 6: $S_3$, $C_6$ 12: $A_4$ 18: $S_3\times C_3$ 24: $A_4\times C_2$ 72: 12T43 288: $A_4\wr C_2$ Resolvents shown for degrees $\leq 47$
Subfields
Degree 2: None
Degree 6: None
Degree 9: $S_3\times C_3$
Low degree siblings
12T206 x 3, 18T268 x 2, 18T271 x 3Siblings are shown with degree $\leq 47$
A number field with this Galois group has no arithmetically equivalent fields.
Conjugacy Classes
| Cycle Type | Size | Order | Representative |
| $ 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1 $ | $1$ | $1$ | $()$ |
| $ 2, 2, 2, 2, 2, 2, 1, 1, 1, 1, 1, 1 $ | $9$ | $2$ | $( 1, 2)( 5, 6)( 7, 8)(11,12)(13,14)(17,18)$ |
| $ 2, 2, 2, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1 $ | $9$ | $2$ | $( 7, 8)( 9,10)(15,16)(17,18)$ |
| $ 2, 2, 2, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1 $ | $18$ | $2$ | $( 3, 4)( 5, 6)( 7, 8)(11,12)$ |
| $ 2, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1 $ | $9$ | $2$ | $( 1, 2)( 5, 6)$ |
| $ 2, 2, 2, 2, 2, 2, 1, 1, 1, 1, 1, 1 $ | $9$ | $2$ | $( 3, 4)( 5, 6)( 7, 8)( 9,10)(13,14)(15,16)$ |
| $ 2, 2, 2, 2, 2, 2, 1, 1, 1, 1, 1, 1 $ | $6$ | $2$ | $( 1, 2)( 3, 4)( 9,10)(11,12)(15,16)(17,18)$ |
| $ 2, 2, 2, 2, 2, 2, 1, 1, 1, 1, 1, 1 $ | $3$ | $2$ | $( 1, 2)( 3, 4)( 7, 8)(11,12)(13,14)(15,16)$ |
| $ 3, 3, 3, 3, 3, 3 $ | $64$ | $3$ | $( 1, 5, 3)( 2, 6, 4)( 7,12,10)( 8,11, 9)(13,17,16)(14,18,15)$ |
| $ 3, 3, 3, 3, 3, 3 $ | $64$ | $3$ | $( 1, 3, 5)( 2, 4, 6)( 7,10,12)( 8, 9,11)(13,16,17)(14,15,18)$ |
| $ 3, 3, 3, 3, 3, 3 $ | $32$ | $3$ | $( 1,13,11)( 2,14,12)( 3,15, 8)( 4,16, 7)( 5,17, 9)( 6,18,10)$ |
| $ 6, 6, 3, 3 $ | $96$ | $6$ | $( 1,14,11, 2,13,12)( 3,15, 7, 4,16, 8)( 5,18,10)( 6,17, 9)$ |
| $ 6, 6, 3, 3 $ | $96$ | $6$ | $( 1,17, 8)( 2,18, 7)( 3,14,10, 4,13, 9)( 5,16,12, 6,15,11)$ |
| $ 3, 3, 3, 3, 3, 3 $ | $32$ | $3$ | $( 1,17, 7)( 2,18, 8)( 3,13,10)( 4,14, 9)( 5,15,11)( 6,16,12)$ |
| $ 6, 6, 3, 3 $ | $96$ | $6$ | $( 1,16,10, 2,15, 9)( 3,18,12, 4,17,11)( 5,13, 8)( 6,14, 7)$ |
| $ 3, 3, 3, 3, 3, 3 $ | $32$ | $3$ | $( 1,15,10)( 2,16, 9)( 3,18,12)( 4,17,11)( 5,14, 8)( 6,13, 7)$ |
| $ 2, 2, 2, 2, 2, 2, 1, 1, 1, 1, 1, 1 $ | $12$ | $2$ | $( 7,16)( 8,15)( 9,18)(10,17)(11,14)(12,13)$ |
| $ 4, 4, 2, 2, 2, 2, 1, 1 $ | $36$ | $4$ | $( 1, 2)( 5, 6)( 7,16, 8,15)( 9,17,10,18)(11,13)(12,14)$ |
| $ 4, 4, 2, 2, 1, 1, 1, 1, 1, 1 $ | $36$ | $4$ | $( 7,15, 8,16)( 9,18,10,17)(11,13)(12,14)$ |
| $ 2, 2, 2, 2, 2, 2, 2, 2, 1, 1 $ | $36$ | $2$ | $( 1, 2)( 5, 6)( 7,15)( 8,16)( 9,17)(10,18)(11,14)(12,13)$ |
| $ 4, 4, 2, 2, 2, 2, 1, 1 $ | $36$ | $4$ | $( 3, 4)( 5, 6)( 7,16)( 8,15)( 9,17,10,18)(11,13,12,14)$ |
| $ 4, 4, 2, 2, 2, 2, 1, 1 $ | $36$ | $4$ | $( 1, 2)( 3, 4)( 7,16, 8,15)( 9,18)(10,17)(11,14,12,13)$ |
| $ 6, 6, 3, 3 $ | $192$ | $6$ | $( 1, 5, 3)( 2, 6, 4)( 7,13,10,16,12,17)( 8,14, 9,15,11,18)$ |
| $ 6, 6, 3, 3 $ | $192$ | $6$ | $( 1, 3, 5)( 2, 4, 6)( 7,17,12,16,10,13)( 8,18,11,15, 9,14)$ |
Group invariants
| Order: | $1152=2^{7} \cdot 3^{2}$ | |
| Cyclic: | No | |
| Abelian: | No | |
| Solvable: | Yes | |
| GAP id: | Data not available |
| Character table: Data not available. |