Properties

Label 18T241
18T241 1 12 1->12 17 1->17 18 1->18 2 11 2->11 16 2->16 2->18 3 10 3->10 3->16 3->17 4 8 4->8 14 4->14 4->14 5 9 5->9 13 5->13 5->13 6 7 6->7 15 6->15 6->15 7->1 7->10 7->16 8->3 8->11 8->18 9->2 9->12 9->17 10->6 10->8 10->13 11->4 11->9 11->15 12->5 12->7 12->14 13->2 13->4 13->8 14->3 14->6 14->7 15->1 15->5 15->9 16->3 16->4 16->11 17->1 17->6 17->10 18->2 18->5 18->12
Degree $18$
Order $972$
Cyclic no
Abelian no
Solvable yes
Primitive no
$p$-group no
Group: $C_3^3:S_3^2$

Related objects

Downloads

Learn more

Show commands: Magma

Copy content magma:G := TransitiveGroup(18, 241);
 

Group invariants

Abstract group:  $C_3^3:S_3^2$
Copy content magma:IdentifyGroup(G);
 
Order:  $972=2^{2} \cdot 3^{5}$
Copy content magma:Order(G);
 
Cyclic:  no
Copy content magma:IsCyclic(G);
 
Abelian:  no
Copy content magma:IsAbelian(G);
 
Solvable:  yes
Copy content magma:IsSolvable(G);
 
Nilpotency class:   not nilpotent
Copy content magma:NilpotencyClass(G);
 

Group action invariants

Degree $n$:  $18$
Copy content magma:t, n := TransitiveGroupIdentification(G); n;
 
Transitive number $t$:  $241$
Copy content magma:t, n := TransitiveGroupIdentification(G); t;
 
Parity:  $-1$
Copy content magma:IsEven(G);
 
Primitive:  no
Copy content magma:IsPrimitive(G);
 
$\card{\Aut(F/K)}$:  $3$
Copy content magma:Order(Centralizer(SymmetricGroup(n), G));
 
Generators:  $(1,18,2,16,3,17)(4,14,6,15,5,13)(7,10,8,11,9,12)$, $(1,17,10,6,15,9,2,18,12,5,13,8,3,16,11,4,14,7)$, $(1,12,14,3,10,13,2,11,15)(4,8,18,5,9,17,6,7,16)$
Copy content magma:Generators(G);
 

Low degree resolvents

$\card{(G/N)}$Galois groups for stem field(s)
$2$:  $C_2$ x 3
$3$:  $C_3$
$4$:  $C_2^2$
$6$:  $S_3$ x 2, $C_6$ x 3
$12$:  $D_{6}$ x 2, $C_6\times C_2$
$18$:  $S_3\times C_3$ x 2
$36$:  $S_3^2$, $C_6\times S_3$ x 2
$54$:  $C_3^2 : C_6$
$108$:  12T70, 18T41
$162$:  $C_3 \wr S_3 $
$324$:  18T119, 18T121

Resolvents shown for degrees $\leq 47$

Subfields

Degree 2: $C_2$

Degree 3: $S_3$

Degree 6: $D_{6}$

Degree 9: None

Low degree siblings

18T241 x 2, 27T290 x 3, 36T1501 x 3

Siblings are shown with degree $\leq 47$

A number field with this Galois group has no arithmetically equivalent fields.

Conjugacy classes

Conjugacy classes not computed

Copy content magma:ConjugacyClasses(G);
 

Character table

66 x 66 character table

Copy content magma:CharacterTable(G);
 

Regular extensions

Data not computed