Show commands: Magma
                    
            
Group invariants
| Abstract group: | $C_3^3:S_3^2$ | 
     | |
| Order: | $972=2^{2} \cdot 3^{5}$ | 
     | |
| Cyclic: | no | 
     | |
| Abelian: | no | 
     | |
| Solvable: | yes | 
     | |
| Nilpotency class: | not nilpotent | 
     | 
Group action invariants
| Degree $n$: | $18$ | 
     | |
| Transitive number $t$: | $241$ | 
     | |
| Parity: | $-1$ | 
     | |
| Primitive: | no | 
     | |
| $\card{\Aut(F/K)}$: | $3$ | 
     | |
| Generators: | $(1,18,2,16,3,17)(4,14,6,15,5,13)(7,10,8,11,9,12)$, $(1,17,10,6,15,9,2,18,12,5,13,8,3,16,11,4,14,7)$, $(1,12,14,3,10,13,2,11,15)(4,8,18,5,9,17,6,7,16)$ | 
     | 
Low degree resolvents
$\card{(G/N)}$ Galois groups for stem field(s) $2$: $C_2$ x 3 $3$: $C_3$ $4$: $C_2^2$ $6$: $S_3$ x 2, $C_6$ x 3 $12$: $D_{6}$ x 2, $C_6\times C_2$ $18$: $S_3\times C_3$ x 2 $36$: $S_3^2$, $C_6\times S_3$ x 2 $54$: $C_3^2 : C_6$ $108$: 12T70, 18T41 $162$: $C_3 \wr S_3 $ $324$: 18T119, 18T121 Resolvents shown for degrees $\leq 47$
Subfields
Degree 2: $C_2$
Degree 3: $S_3$
Degree 6: $D_{6}$
Degree 9: None
Low degree siblings
18T241 x 2, 27T290 x 3, 36T1501 x 3Siblings are shown with degree $\leq 47$
A number field with this Galois group has no arithmetically equivalent fields.
Conjugacy classes
Conjugacy classes not computed
Character table
66 x 66 character table
Regular extensions
Data not computed